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" Preface

The Comprehensive School Mathematics Program (CSMP) is a complete mathe~
matics curriculum for students of all ability levels, grades K-6, The program's
goals of improving the effectiveness of mathematics instruction assume that
students can learn and enjoy learning mathematics, not only standard arithmetic
but also areas of mathematics not traditionally taught in the elementary school.
To accomplish these goals, CSMP presents content as an extension of experi-
ences that children have encountered in their development. Using a "pedagogy
of situations," students are led through problem-solving experiences in an
atmosphere of constant applications, for example, in stories or game-like set-
tings. A feature unique to CSMP is the development of pictorial languages
which foster student understanding of mathematical concepts and provide stu-

dents the means to solve problems without burdensome terminology.

Topics in probability and statistics find a natural place in the CSMP curriculum.
Students find the stories and games appealing and often relate them to everyday
experiences. The development of innovative, pictorial techniques allows the
analysis of probability and ctatistical situations to be a part of an elementary
mathematics curriculum. The articles in this book summarize these activities

and methods proven successful by the enthusiastic reception by CSMP students.

We extend our deepest gratitude to Frédérique Papy, former CSMP Associate
Director for Research & Development, whose creativity and tireless efforts
shaped the CSMP spirit and produced many of the ideas in this book. Our spe-
cial thanks also go to Lennart Rade who brought his clever probability stories
and innovative solution techniques from Sweden to St. Louis classrooms. We
thank Burt Kaufman, former CSMP Director, and Clare Heidema, current CSMP
Director, who suggested a need for this book and supported its development.
Our thanks are especially due to the CSMP writers, typist Deborah Wriede,

and artist Steven Sims, who survived the seemingly endless editoiial changes.




We publish this bcok as a resource of ideas for classroom teachers and for
educators responsible for mathematics teadher education. Our hope is that
our experiences will enhance the role of probability and statistics in class-~

rooms. We welcome hearing of your experiences.

August, 1982 Richard D. Armstrong

Pamela Pedersen




Introduction

Lennart Rade

A fundamental goal of education is to prepare children for life in a society, a
society where mathematics is becoming increasingly important. Accordingly,
one goal of mathematics teaching is to provide children the proper background
for an understanding of the wqud around them. Both goals are strong reasons
for including probability and statistics in a school's mathematics curricuium.
These areas of knowledge are fundamental to the present-day modeling of our
world in mathematical terms. Probabilistic and statistical methods are impor-
tant tools in industry and in business, and such methods are essential in both
physical and social sciences. Itis also important for daily life in our society
that people have some knowledge about the use and misuse of statistical rea-
soning. For instance, advertisements often use "statistical" reasoning in the
form of graphs, tables, and verbal arguments in their attempts to influence

consumers.,

It is well docurented that the study of combinatorics, probability, and statistics
strongly motivates children by presenting the challenge and the intrinsic appeal
of applications. Inclusion of these areas in the mathematics curriculum will
further help to foster a positive attitude toward mathematics in elemeatary

school children.

Probability theory is a very rich mathematical theory in close c9ntact with many
other parts of present-day mathematics. Also, probability theory employs many
different mathematical tools. Sc with probability theory in the curriculum, stu-
dents encounter and use a rich variety of mathematical tools and concepts. For
example, already in elementary school they meet such basic mathematical con-

cepts as sets, functions, and relations and use such basic mathematical tools

as tables, graphs, codes, and abaci.




The Comprehensive School Mathematics Program (CSMP) has from its start been
very interested in the possibilities of including probability and statistics in the
elementary school mathematics curriculum. Lessons Gealing with these areas
appear in all parts of the CSMP curriculum and much effort has been used to
investigate appropriate ways to introduce probability and statistics at the ele-
mentary school level. An internationally well-known indication of this interest

is the book The Teaching of Probability and Statistics {1], which includes the

proceedings of the CSMP international conference on teaching probability and
statistics at the pre-college level. This conference was held in Carbondale,
Illinois in March 1962. The participants of this conference adopted a number

of recommendations of which the following may be quoted.

The participants strongly endorse CSMP's efforts to introduce
probability and statistics as subjects for study at elementary
and secondary school levels. They believe that these subjects
should be taught starting from a wealth of realistic examples. _
Some emphasis should be placed on their use as tools, both for
the development of mathematical structures and in the building
of applied models.

In teaching probability, full advantage should be taken of prac-
tical experiments, and in particular of simulation methods. The
knowledge acquired from such experiments should be directly
reinforced by a theoretical framework ; this should not be too
rigid. In view of the different possible approaches to the sub-
ject, the formal concepts and theories presented should be
eclectic.

Descriptive statistics of physical, biological, and social daza
are subjects of great importance to every citizen. They can ve
taught at almost every level. Material of this kind could serve
as an introduction to a school course which might include further
topics in statistical theory and inference. Such a course should
be taught in careful coordination with probability theory and
should make use of realistic data wherever possible.

The CSMP work on curriculum development is based on some general pedagogical
principles, which also have guided the work presented here. ‘The following

three tenets are basic to the CSMP view of mathematics teaching:

1) Mathematics should be taught as a unified whole.

2) Learning occurs best through interrelated experiences.

3) Children learn by reacting to problem-solving situations.

8 9




In the CSMP curriculum, the learning process is regarded as a spiral process

where children learn by interacting with sequences of related situations,

The CSMP curriculum is published as a sequence of lessons in detailed Teacher's
Guides, suppiemented by colorful student workbooks and storybooks [2]. Refer-

ences to lessons described in this bock are listed at the end of each article.

The papers in this book offer a selection of the ideas that CSMP has developed
in its effort to effectively teach probability and statistics. The suggestions and
the lessons are the results of many years of discussions and experimentation

with various strategies. All of the ideas reflect classroom experiences,

In a mathematics curriculum, the goal of the earliest activities in probability
and statistics should be to provide students with experiences involving funda-
mental concepts such és randomness, combinatorics, and the display of infor-

mation. In their paper Prohability and Statistics in Grades 1 to 3, Mark Driscoll

and Richard Armstrong describe the stories and games in the CSMP curriculum
that introduce these concepts. A key to maximizing the children's benefit from
these experiences is to encourage student discussion about them. In these
stories and games, teachers continually give students an opportunity to state
their opinions, to consider the possibilities. to make predictions, and to discuss
the results. Such inteiactive involvement prepares students for the probability
and statistics situations encountered in the CSMP Intermediate Grades curriculum

!

as described in other papers of this book.

In An Area Model for Solving Probability Problems, Richard Armstrong presents a

very interesting method of solving probability problems. The method makes use
of a graphical representation in which a square is divided into regions according
to the probabilities piesent in the problem. This technique allows the solution
of problems dealing with multi-stage random experiments in a very elegant and

concrete way that avoids multiplication of fractions.

The paper includes solutions to some cases of the problem of points, a classical

problem of probability theory that was in the focus of interest when the theory
was developed by Pierre Fermat, Blaise Pascal, and other mathematicians during

the 17th century. An example of this class of problems is to determine each
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player's probability of winning a game to 10 points when player A has scored 9
and player B has scored 7. The following illustration shows the area method for

attaining the solution.

q-7

10-9

10~7 10-8 - ——

9-10

It is seen from the graph that player A has probability % of winning and that the

1
coriesponding probability for player B is rk

Usually this kind of problem is solved with the aid of tree diagrams, where pro-
babilities are found by multipiying fractions alcng the branches. In this case,

the following tree diagram would be usea.

-
™)~

From the above diagram we calculate, with the aid of multiplication and addition

7
rules, that player A wins with probability 5

L) (i)
1




This example clearly shows the merits of the area method' compared to the .tree
diagram method. The latter method is, of course, very powerful and certainly
should also be presented in introductory courses in probability. The paper

Fair Games? in this book describes this method.

‘a

The study of different random games has always been important for the develop-
ment and teaching of probability theory. The correspondence between Pierre
Fermat and Blaise Pascal focused on problems concerning random games. In
the paper Fair Games ?, Jim Harpel discusses a sequence of such games. His
paper describes how to use these games tc introduce the methcd of using tree
diagrams. Observe that sucn diagrams do not require the multipli_cation of frac-
tions. For instance, in the problem of points discussed earlier, an alternative
is to consider what is expected to occur in 200 trials. This approach leads to

the following tree diagram, from which also it is seen that player A wins with
100 + S50 + 25
200

probability

The paper Whose Triangle Is It? by Richard Armstrong introduces a classic pat-

tern of combinatorics, the Pascal Triangle, which incidentally is much older
than Blaise Pascal (1623-1662), who used the triangle in connection with his
treatmen’ of the problems of points. Students are led to discover the pattern in
connectioa with a challenging story, and then they use the Pascal Triangle to

sclve other probability problems.




In the paper Codes to Solve Prob}ems, Pamela Pedersen presents three different
- situations from the CSMP curriculum. These situations lead to combinatoric
and prz)babilistic problems that are solved with clever choices of appropriate
codes or abaci, which are very efficient tools for these kind of problems. For
students familiar with these tools from other parts of the CSMP curriculum, the
codes and abaci allow them to solve quite complex combinatoric and probabil-

. istic problems.

Probapility theory has relations to many other fields of mathematics even,
surprisingly, to geometry. As a matter of fact, random or stochastic geometry

is an important area of present-day probability theory with numerous applications.
A classic problem in this field is the problem of finding the probability that one
may construct a triangle with the pieces formed when a stick is bro)sen at random

in three parts. In the paper Breaking a Stick: Probability Without Counting,

Joel Schneider discusses how this problem is presented and solved in the CSMP
curriculum. The treatment of this problem gives students a first conta~t with

ho.’ nrobabilities may be calculated when the set of outcomes is a continuum,

In Snunda's Newsstand, Clare Heidema considers an advanced operations re-

search problem. In the literature, the problem is usually called the " Newsboy's
Problem" and is taken from inventory theory. Characteristic for thic prcblem is
that a decision about inventory is made once for the entire demand process.
Every day Shunda has to decide how many newspapers to buy from her dealer.

However, the demand is uncertain and the problem for Shunda is to ordey enough

to realize full profit but not too much so as to avoid losses on the excess,
Shunda uses a graph of daily demand to determine the most profitable inventory.
This paper provides an excelient example on how a problem, which is asually
discussed on a high mathematical level, can be made understandable already
at the elementary school level. The paper shows how statistics as the art of
making decisions when faced with uncertainty can be treated in a meaningful

way at an elementary level.

One important field for applications of probabilistic and statistical methods is

that of demography, that is, the statistical study of human populations especially

with reference to size and distribution. CSMP has developed a sequer.ce of
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lessons dealing with this topic, which Tom Giambrone describes in the paper

Population Growth. These lessons include work with population growth, the

organization of population data in graphs and tables, and work with pcpulation
pyramids. Also, students learn how to find the median age of a population,
These lessons allow students to use hand-calculators in order to work with

real population data.

There is a great growing interest today in the didactics of probability and sta-
tistics and especially so with regard to how these subjects should be introduced
at the elementary school level. A sign of this interest is the 1982 NCTM Year
Book [ 3], which is devoted to the teaching of probability and statistics at the
school level. CSMP has pioneered work in this area. It is my hope that many
will find the ideas and straiegies described here useful and inspiring in future

work in this important field.
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Probability and Statistics in Grades 1 to 3

Mark Driscoll
Richard Armstrong

Young children first encounter the notion of randomness in their everyday exper-
iences. Games often involve spinners or dice. Their parents warn them, "Stop
that, you might hurt yourself," or "It will probably rain this afternoon." CSMP
extends these experiences by presenting appealipg stories and games for stu-
dents to consider. The appeal arises not only from the settings buc also from

the challenge tc the students' intuition and problem-solving skills. To prepare

students for the probability and statistics concepts the‘y will encountaer in CSMP's
Intermediate Grades Program, CSMP's Primary Grade activities focus on three -~ I

fundamental notions: randomness, combinatorics, and the display of information.

A key,to understanding the concept of randomness is the role of the "unknown.."
Some facts are unknown simply because sufficient information is not availabkle.
For example, only after several clues can students determine a secret number
that their teacher has selected. Other events are unknown because they are,
by nature, random. Thus no one can consistently predict the result of rolling
two dice. A significant insight occurs when children realize that, despite the
randomness, experience or analysis may i1eveal the likelihood of possible out-

comes .

-
A discussion of the likelihood of various outcomes when dealing with random
devices such as dice, coins, spinners, or marbles leads naturally to combina-
torial questions such as "How many different outcomes are possible?" CSMP
students' early experiences with arithmetic problems with multiple solutions,
for example, "Find pairs of numbers whose sum is 10," provide their first expo-
sure to combinatorics. Their initial tendency in tackling these problems is to

list solutions as they find them, usually unsystematically. Only gradually do

they recognize the need for organizing a problem's solutions to guarantee that

all of the possibilities have been found. In addition to being a rich source of

15 15 :
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problems for investigation, such combinatorial situations prepare students to
determine the probability of an event since often a first step in studying a pro-

bability proklem is to consider all pcssible outcomes.

The systematic listing of solutions to combinatorial prcblems is an example of
the third focus of the proba%ility and statistics strand in CSMP, namely the de-

velopment of efficient means of crganizing information. In a variety of activities

in the Primary Grades, students experience the value of using lists, tables, and
graphs to record solutions, results of games, or data they have collected. They
discover that organicing the infor;nation makes it easier to answer questions and
to draw conclusions about the problem. These early experiences with tables

and graphs prepare students to analyze many statistical and numerical problems

in the Intermediate Grades.

The following three lessons proviue a sampling of activities from the CSMP Pri-
mary Grades Program that illustrate the development of the three concepts out-

lined above.

A COIN PUZZLE - FIRST GRADE

-

Ms . Kavanaugh takes a paper cup from her desk drawer and shakes it. Her
first-grade students hear coins jingling and try to guess the amount of money
hidden in the cup. However, a few students remember similar activities they
have done and say, "Don't tell us what is in the cup. Give us aclue." Ms.
Kavanaugh carefully states her first clue, "I have exactly six coins. Each coin
is either a dime or @ penny." Martha suggests four dimes and two pennies and

the whole class belps her count the amount of money that would be: "10¢, 20¢,

30¢, 40¢, 41¢, 42¢." On the board, Ms. Kavanaugh records the five combina-
tions her students find. 7To maintain the pace of the lesson, she provides the

other two possibilities herself.

16
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Several students again prefer guessing the amount of money in the cup. Tommy
seems convinced it's his suggestion, 6¢. Then a second clue is provided:

"There are at least two pennies in the cup."

“It could still be 6¢."
"Cross out 51¢. there's only one penny.,"
Shortly the class agrees that only the combinaticns for 51¢ and 60¢ can be

erased.

"Here is my last clue," continues Ms. Kavanaugh. "There are more dimes than
pennies in this cup. If you know the amount of money in this cup, whisper it to

me.

Most students whisper the correct answer, 42¢, and then Ms, Kavanaugh lets

them see the four dimes and two pennies in the cup.




™

The discussion in this lesson highlights the distinction between the uncertainty

of "It could be 6¢" and the deduction "It must be 42¢." This experience with an
undetermined event is part of the students' preparation for encountering random

events.

Th:a situation in this lesson exemplifies the students' initial experfences with
combinatorial problems in the first grade. The emphasis is on finding many so-
lutions , not necessarily all solutions. The list simply records solutions; it

need not be organized systematically to suggest missing solutions.

TEMPERATURE BAR GRAPHS - SECOND GRADE

On the first day of schcol afier Christmas vacation, Mr. Warren shows his class
a new Celsius thermometer. The students' curiosity and questions initiate a dis-
cussion about temperature, thermometers, above zero and below zero readings,
and Celsius and Fahrenheit scales. Mr. Warren passes the thermometer éround
the class, and everyone confirms that the indoor temperature is 23°C. He then

pins a duty roster and the following poster to the bulletin board.

TEMPERATURE CHART
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°Celsius

“1'1] hang the thermometer outside the classrobmvwindow," explains Mr. Warren.
"Each school day morning, the assigned student will read the thermometer and
record the reading on this bar graph. I've already shown that this morning's
outside temperature was "3° Celsius." ,
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The students read and record the outside morning temperature every school day
in January and February. Often Mr. Warren briefly asks questions about the
day's temperature and the bar.graph, for example:

e '"Before Nguyen feads today's temperature, who wants to guess what

it might be?"

e "What do you predict tomorrow's temperature will be?"

® "How much colder (or warmer) is today than yesterday?"

e "How often have we previously matched today's temperature? "

e "What has been our coldest temperature? our warmest temperature? "

e "Which is warmer, 2°Cor "10°C? How much warmer?"

After two months of recording temperatures, Mr. Warren suggests that they com-
pare their data to the temperatures for St. Louis and New Orleans. Each child
receives a listing of the two cities' temperatures for January and February and

uses that data to draw & bar graph for each city :

TEMPERATURE CHART
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Referring to the three bar graphs, the students respond to Mr. Warren's ques--
tions: '
e "Which city had the warmest weather in January and February? the
coldest?"
e "What was the highest temperature for each city? the lowest temper-
ature?"
e "Which city had the greatest variation in temderatures ?

e "What was the most common temperature in each city?"

As the bell rings, the students insist on drawing a new graph for March and
April and on continuing to record the morning temperature each day. They seem

curious to observe the gradual warming as winter changes to spring.

This two-month activity exposes second-grade students to several benefits of
graphing data. Tirst, the graph imposes an organized presentation of the data,
ordering the temperatures from lowest to highest. Also, the bar graph provides
a very strong visual overview of the data; for example, it is clear that New
Orleans.has a warmer winter than St. Louis. These two features — the order-
liness and the visual impact — allow students to answer questions about the
data and to draw conclusions much more readily than if the data were in a table

or in a list.

Other second-grade lessons continue the development of the themes of random-
ness and of combinatorics. For example, two lessons concern the rolling of two
dice. By rolling the dice many times and drawing a bar graph of the sum of the
two dice, stucdents conclude that some sums (e.g., 6, 7, and 8) occur more
frequently than other sums (e.g., 2, 3, 11, and 12). Hence students experi-

ence that even though the outcome is random, certain events are more likely

tpan other events.




A CUBE GAME - THIRD GRADE

Ms. Schneider shows her class a red cube and a blue cube that she has cut and

folded from cardboard.

4 /

0 [# 6|

Each cube has a number on each of its six faces. Unfolding each cube, Ms.
Schneider shows the shape that she made each cube from. She then draws the

labeled shapes on the board.

4110 4 111611
10 16

10 !
10 l

"Suppose," says Ms. Schneider, '"that we toss the blue cube three times and

add the numbers that appear on top. What sum could we get? "

A student suggests 30. Several classmates agree, pointing cut that 10 could

be rolled three times. This combination is recorded on the board:
BLUE 0+ 10 +10 = 30

The students then offer the other possibilities for the blue cube.

10+10 +4 =24
0+ 4 +4 =18
4 +4 +4 =12

21 <]




Joanne confidently concludes, "That's a:l of the possibilities for the blue cube
because with three rolls you will roll 4" no times, once, twice, or three times.

Similarly, the students find the possibilities for the red cuke.

RED |6+ 16 +16 =48
6 +16+ 1 =33
6+ +1 =18
I+ 1 +1 =3

Ms. Schneider then suggests playing a two-person game wi*h the two cubes,
"One player rolls the red cube three times: the other player rolls the blue cube

three times. The player with the highest sum for the three rolls wins. Which

cube would you rather play with?"

Some students prefer the red cube:

"Two of the red cube's sums, 48 and 33, are higher than any of

the blue cube's sums."

"You can get 16's with the red cube."

Others prefer the blue cube:

"The blue cube has four 10's while the red cube has four I's.™
"You might get a sum of 3 on the red cube and lose for sure.”
"You won't roll many 16;5 with the red cube."

"It's easier to get a "30" on the blue cube than it is to get a

- 148" on the red cube."

X

After the lenqthy discussion, no consensus is reached and Ms. Schneider se-
lects two students to play the game. The student with the red cube wins; the
score is 33 to 24. Other pairs of students play the game, one at a time. The

. ,)2

A~
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players with the blue cube win 3 out of 5 games. As the students continue to
play the game, Ms. Schneider often interrupts a game to ask some questions
about the situation, for example,
e "The firs: two rolls of the blue cube are 10 and 4. What could this
player's score be after three rolls?" (Answer: 18 or 24)
e "The player with the red cube has a total score of 3. Canhe win?"
(Answer: No)
e "The player with the red cube scores 18. The blue player's first roll
is 2 10. Can she still win? lose? tie?" (Answer: She can't lose.
She will either tie or win.)
e "Thie score of the player with the blue cube is 30. The lirst two rolls
of the red cube are 16 and 1. Which player is more likely to win?"
(Answer: The player with the blue cube. The other player needs a

16, but there are more 1's than 16's on the red cube.)

At the end of the lesson, the nlayers with the red cube have won 17 out of the
30 games. This evidence convinces many students to prefer the red cube; a
few students remain undecided or still prefer the blue cube. Ms, Scaneider,
realizing that a deeper analysis of probability is more appropriate for a later

lesson, brings the discussion to an end.

This lesson illustrates an application of combinatorics and provides a setting
for an intuitive discussion of probabilistic questions. Third-grade activities
place an emphasis on finding all of the possibilities in combinatorial situations.
As demonstrated in this lesson, an organized list aids in reaching the conclu-

sion that no combinations have been missed.

The teacher's uuestions about what could happen motivate the discussion of
possible outcomes versus impossible outcomes and of likely events versus un-
likely events. Through these discussions, students learn that random events

are not entirely chaotic. An analysis of the random device, the cube in this

lesson, yields information on the likelihood of certain events.




SUMMARY

A primary goal of the probability and statistics activities in Grades 1-3 is to
provide a variety of experiences involving randomness, combinatorics, and
organizing information. By developing these three topics as described in the
above lessons, CSMP prepares its students for the more sophisticated problems

in their Intermediate Grades Program described in the other articles of this book.

In the CSMP curriculum, the activities described in this paper appear in the
following lessons:

CSMP Mathematics for the First Grade, Part II, Lesson S73.2

CSMP Mathematics for the Upper Primary Grades, Part I, Lesson L1S

CSMP Mathematics for the Upper Primary Grades, Part II, Lessons L6,
L12, Ll4

CSMP Mathematics for the Upper Primary Grades, Part III, Lesson L12




Fair Games?

Jim Harpel

Many mathematical problems either do not interest children or cannot be pre-
sented in ways that are accu.ate and yet accessible for elementary-school
students. Fortunately, probability provides exceptions to these limitations.
Paralleling the historical role of games in the development of the theory of
probability, the lessons summarized in this article focus on games involving
coins and marbles. The games are not only enjoyable, but also easy to under-

stand.

Based on their experiences and due to the apparent simplicity of the games,

students have considerable trust in their intuition as they consider the fairness
of the games. They feel that they understand the situations and therefore con-
fidently make predictions about the expected outcomes. Yet in probabilistic
situations, the intuition can often be fooled. Paradoxes abound in probability.
A key question in curriculum development is to determine an appropriate role for
paradoxes. Handled carelessly, paradoxes can destroy the students’ trust in
intuition and convince them that probability is inscrutable. Rather, the peda-
gogical goals of using paradoxes should be to intrigue students with situaticns
having surprising results and to refine each student's intuition to encompass

these results,

To achieve these goals, CSMP employs a three-step px:czcedure for presenting
paradoxical situations: prediction, experimentation, a\nd analysis. Once a
game is explained, the prediction step allows students to express their opinions
based on their intuition. The predictions force discussion and clearly stated

commitments which set the stage for revealing the paradox.

In the second step, experimentation, students use dice, coins, spinners, or

other random devices to test thelir predictions by actually playing the game many
times. The conflict between the predictions and the experimental results serves
25 25
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to dramatically pose the paradox. A strongly felt need has been created within
the students — the discrepancy between predictions and results cries for an
explanation. This need motivates the third step in the process: mathematical

modeling and analysis of the situation.

The need to analyze a probability problem often becomes a roadblock which
ultimately precludes the study of proBability in the early grades. Admittedly,
most traditional analyse. of probability p;roblems are too complex for elementary-
school students. The papers in this book illustrate several technigques used in
the CSMP curriculum that are appropriate for these students. In particular,

the activities in this article illustrate the use of pictorial methods and proba-
bility trees to accurately model the problems and to appeal to students. The
analyses tend to confirm the experimental results and often reveal theg source

of any discrepancy between those results and the .students' predictions. ‘The
paradox within the game situation has motivaied the students to proceed through
steps of prediction, experimentation, and analysis. The active personal in-
volvement with the story provides a basis for refining the student's intuition

with regard to probability situations.

To captivate the studenis' interest, the paradoxes occur in stories about the
protagonist Bruce, a boy who invents gyames to play with his friends. The games

appear fair but usually favor Bruce.

SAME OR DITFERENT?

"Two children, Alice and Bruce, are responsible for washing the dinner dishes.
In order that they both not have to wash and dry each night, they decide that

, some method be used to select randomly who will wash and dry the dinner dishes.
Bruce suggests that 2 black marbles and 1 white marble be used. Alice will mix
the marbles in her hands behind her back and draw two of the marbles without

looking. What could Alice draw?™

"She could draw two black marbles, or she could draw a black and a white marble."




"Yes, Alice could draw marbles of the same color or of different colors. Bruce
will try to predict what Alice has drawn. If Bruce correctly predicts what Alice
has drawn, Alice must wash the dishes. If he is wrong, he must wash the

dishes. Is this a fair way to decide who washes the dishes?"

With two black marbles and one white marble, the students sense that the game
is unfair but they don't reach a concensus on who is favored. The students dis-
cuss this issue for a few minutes. They insist on playing the game. Two vol-
unteers play the game 10 times and record the outcomes on the board.

Different: +HT |

Same: |l{|
"Can we tell from these 10 trials if this game is fair?"

This result convinces some students that "different”" is favored. Other students
are uncertain as to the fairness of the game since the results are so close to
5-5. The teacher suggests that the students pair off and that each pair plays
the game 10 times and records the outcomes. In this classroom, there are 15

pairs of students.

i

"150 games will be played. If this is a fair game, in about how many of those

games do you think you will choose marbles of different colors?"

"If the game is fair, 'same' and 'different’ will each come up about one half of

the time — about 75 times apiece."

As each pair of students completes 10 games, the results are recorded and
totaled, The grand total is:
Different: 103
Same: 47

"Do you think this is a fair game? Should Alice play this game with Bruce to

decide who will wash the dishes?"

"No! The game appears to favor Bruce. He could always guess 'different’ and

usually win,"

' 2 27




Mlat's find out if that's really so; here are the three marbles."

%

O

"What pairs of marbles could Alice choose?"

Students draw cords to indicate the pairs of marbles that Alice could select.

“Altogether there are three possible ways to draw two marbles. In how many

ways could we get a pair of marbles of ths same color?"
"Only by drawing the two black marbles."

"Therefore we have only one chance out of three of getting marbles of the same

color."

K

AN

"What about marbles of different colors? "

"There are two ways to get marbles of different colors. So there are two chances

out of three of drawing marbles of different colors."

S




The teacher draws a probability tree to summarize the information.

P

2
3

v

Different Same

I
3

"Do you see what this means? When we play Bruce's game, we are more likely
to get marbles of different colors than we are to get marbles of the same color.
If we play the game many times, we can expect that about two thirds of the time
we will get marbles of different colors and about one third of the time we will

get marbles of the same color."

"So what result could we have expectcd in the 150 games we just played? About

how many times could we have expected to get marbles of the same color?"

"We should have gotten marbles of the same color about 50 times, because

%— x 150 = 50, and marbles of different colors about 100 times, because % X

150 = 100."

"How does that compare with what actually happened?"
"103 to 47 is close to 100 to 50."

"Is Bruce's game fair?"

"No, he's very likely to win."

The students express little surprise that Bruce's game is unfair. They strongly
doubted that a game with two blaclf marblea and one white marble would be fair.

Now the stage is properly set for a paradox.

"If Alice discovers Bruce's game to be unfair, she could refuse t> play with

Bruce or she could suggest altering the game to make it fair. What changes

could we make so that the game is fair?"




Nearly all of the students suggest adding another white marble so that there
are two white marbles and two black marbles. A few students express the opin-

ion that any game with equal numbers of white marbles and black marbles should

be fair.

"Let's look at the game with two white marbles and two black marbles. Rather

than play this new game 150 times, we'll analyze it."

oIF
o

Much to their surprise, the students notice that this game also is not fair. In

fact, it has the same probabilities as the original game Bruce proposed.

“ Neither of these games are fair, but there are fair games with the same rules
but with different numbers of white marbles and black marbles. Try to find a

fair game."

Individually, students test various combinations of marbles. They find several

games that are almost fair, and a few students find a fair game.

"Use one white marble and three black marbles! There are three out of six

chances to select 'same' and three out of six chances to select ‘different.

o
olw

The students play this game 150 times and record that they draw marbles of the
same color 71 times and of different colors 79 times. These results tend to
confirm the analysis; certainly the game seems$ much more fair than the original

game. There are other fair games with two colors of marbles, but the number of

7
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marbles involved increases quickly.lr

Other variations of Bruce's game can be analyzed. What happens if more black
marbles are added? If more white marbles are added? If a third color marble is

introduced?
The following question motivates another version of the game.

"What happens to Bruce's game if only one white marble and one black marble

are used?"

"You will only get 'different' every time you select a pair of marbles. You have .
one chance out of one of drawing two marbles of different colors and no chance

of drawing marbles of the same color."

"To make a more interesting game, let's change a rule. What if we keep one
white marble and one black marble but we draw one marble then replace it and

draw again?"

With this replacement rule, the order in which the marbles are drawn is impor-
tant. The methnd of analysis must be adapted to take into account the outcomes
white-white and black-black and the order of the draw. The drawing of loops

provides for the white-white and black-black outcomes.

sC0O 0<Os

¥ To find additional fair games is an ex_ellent, challenging project for students.
The increased complexity of the cord diagrams requires the development of new
techniques for counting occurrences of "same" and "different." Fortunately

the diagrams themselves suggest the needed rules. The "next" fair game in-
volves 3 white marbles and 6 black marbles. An algebraic analysis reveals

that the game is fair if and only if the number of white marbles and the number

of black marbles are two consecutive triangular numbers.

SR




But now the cord represents two distinct outcomes: "white then black" and
“black then white." To represent this, replace the cord by two arrows because

an arrow indicates the order of the draw.
D 2 2
L g & )
S S
D D S

The shift from drawing without replacement to drawing with replacement yields
a fair game. In fact, any "same-different" game with replacement and with
equal numbers of white marbles and black marbles is fair. This result partially

justifies any intuitive feelings based on symmetry that students might have had

originally about the situation.

TWO-STAGE PROBABILITY GAMES

The “Same or Different?" lessons and the use of trees to solve combinatorics
problems prepares students to consider multi-stage probability situations. Once

again, Bruce provides the intriguing games.

“Abby and Charles are neighborhood friends of Bruce. One day, Bruce puts three
white marbles and one black marble in a bag. Ina second bag, he puts three
black marbles and one white marble. Bruce's game is to flip a coin. If 'heads'
comes up, Abby picks two marbles from the first bag. If 'tails' comes up, she

picks two marbles from the second bag."

Heads Tails

O O
ONN
Bag 1

- - 32 32




"If O black marbles are drawn, Abby wins.
If 1 black marble is drawn, Bruce wins.

If 2 black marbles are drawn, Charles wins."

"Abby and Charles are always suspicious of their friend's games, so they
wonder whether or not it is a fair game. Do you think Bruce has invented a

fair game? "

The students spend ‘several minutes discussing the game. Some students sug-
gest that the game is fair because there are three possible outcomes and each
child has'one chance to win. Others are suspicious of the game because it is
possible to draw two black marbles from only one of the bags while ona black
marble may be drawn from either bag. The disagreement provides a need to

analyze this game.
"What is the first step or stage of this game?"

"Flipping a coin — you get either 'heads' or 'tails'."

/

"Yes. What happens next?"

"Marbles are drawn from either Bag 1 or Bag 2."

Several students recognize the similarity of this stage with previous work and
suggest using cord pictures to analyze the results. The labels on the cords

indicate the number of black marbles chosen.
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1 Black 0 Black 2 Black 1 Black
(Bruce) (Abbey) (Charles) (Bruce)

The tree representation suggests that Bruce is favored as only he can win in
two ways. Since the product rule has not yet been introduced, other methods

must be used to quantity the situation.

"Suppose that the three children play the game 200 times. What would we
expect to happen? About how many times do we &xpect to get 'heads'? About

how many times do we expect to get 'tails'?

“About 100 times each because —12- X 200 = 100."

0 Black 2 Black 1 Black
(Abby) (Charles) (Bruce)
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| 50 |

1 Black 0 Black 2 Black 1 Black
(Bruce) (Abby) (Charles) (Bruce)

" Now we cén decide how heavily Bruce's game favors himself. About how many

games out of 200 would we expect Abby to win?*

"Abby snould win abouvt 50 games.”

¢

"What is Abby's probability of winning?"

..l; her chances are 50 out of 200."

4
Similar questioning determines that Bruce's probability of winning is —é— and
1
Charles' probability of winning is —. The intuitive approach of "let's pretend

4
to play 200 games" allows students to calculate these probabilities without

recourse to the multiplication and addition of fractions.
"The game is not fair. Bruce has the best chance of winning."

"Yes ; that is what Abby and Charles concluded too, and they were not very
happy with Bruce's game. Could we modify this game so that it would be a fair

game ?"

Some students suggest that the composition of marbles in the bags does not

need to be changed to get a fair game.

"Whenever 'tails’ followed by a draw of one black marble occurs, we just start

the game over again. If this game were played 200 times, Abby would win about




50 times, Bruce would win about 50 times, Charles would win about 50 times,

and the game would have to be started over about 50 times."

Other students discover that by adding two white marbles to the first bag and
rwo black marbles to the second bag. a fair game results. Analysis of this

situation verifies that the new game is fair.

0 Black: 10 cords 1 Black: S cords
1 Black: S cords 2 Black: 16 cords

Again, only Bruce can win regardless of which bag is chosen. Thus some stu-
dents still suspect Bruce is favored. Only by constructing a probability tree

and considering play of 150 games are the "hold-outs" persuaded.

1 Black 0 Black 1 Black 2 Black
(Bruce) (Abby ) (Bruce) (Charles)




Even though only Bruce has two ways (v win, the game is fair:

S50 _ 1
Abby. 50 games; '-1—5-0- = 3
50 1
. vl b e D e
Bruce: 25 + 25 games; 150 3
50 1
2 S 5 S ! = -
Charles: 50 games 150 3
SUMMARY

The immediate goals of these activities are to provide students with appealing
probability problems that they are eager to understand and to develop the tools
needed to analyze the problsms. The paradoxes in Bruce's games usually lead
the students to disagreeing predictions and experimental data, These discre-
pancies intrigue the students and thereby create a need for a deeper understand-
ing of the problem. The analyses, based on dot and cord pictures and tree
diagrams, provide visual means for explaining the paradoxes. After revealing
the source of a paradox, the challenge is to use the same analytical tools

together with trial and error to find modifications that produce a fair game,

The mathematical goal of these activities is to introduce tree diagrams as a
means for determining probabilities. Tree diagrams are a powerful tool for
analyzing probability problems beca .se they explicitly present all of the random
events within a situation in their lcgical order, and they offer strong visual
support for the appropriate multir lication and addition of probabilities. Exper-
iences with tree diagrams lead directly to the basic algebraic rules for combining

probabilities.

This paper demonstrates a way to introduce tree diagrams to elementary school
students; a key is to avoid any need to add or multiply fractions. Instead, stu-
dents consider what "should" happen if a situation, for example, a game, is
repeated a large number of times. Running, for example, 200 games through a
probability tree determines each player's expected number of wins and thus
his/her probability of winning. This technique, along with prediction and

experimentation, serves to develop intuition with regard to probabilistic

situations.
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In the CSMP curriculum, the activities in this paper appear in the fourth-grade

lessons from the Probability and Statistics strand.




Ccdes to Solve Problems

Pamela Pedersen

Situations involving equally likely outcomes provide a good place to begin
studying probability, a place accessible to students at the intermediate grade
levels. Inproblems involving a finite number of equally likely outcomes, the
measnre of the probability that a particular event will occur is simply the ratio
of the number of favorable outcomes to thé number of possible outcomes. To
measure the probability of a particular event occurring in such situations, one
needs to count:

a) the elements in the outcome set, and

b) the elements in a particular subset (event) of the outcome set.

In these situations probahility questions reduce quickly to combinatorics ques-
tions, probability providing an appealing context in which to develop combinatoric

techniques.

This paper describes three probability situations from the Comprehensive
School Mathematics Program (CSMP), each situation involving a set of equally
likely outcomes. To solve the problems posed, counting techniques are used
that fit the interests and experiences of students in the intermediate grades.
Each of the solutions involves a mathematical model of the situation in which
the counting of outcomes is readily achieved, the necessary correspondence

between the situation and the model beiny accomplished by a code.

In two of the three situations, the code sets up a one-to-one correspondence
betwezen the possible outcomes and configurations on base abaci — "pencil and
paper" schematics upon which convenient number base systems are imposed. To
understand these solutions, students need to have many prior experiences win

various base abaci, gradually building contidence that for every number there ts

39 39




f— . S

exactly one standard configuration on any given abacus, and that every conti-

guration on an abacus represents exactly one number.

The third situation employs a rectilinear grid system as a coding device. The
grid system provides a strong visual aid that makes clear how to apply the stan-

dard product rule for combinatorics in the caontext of this problem.

Before considering the three situations, letus look briefly at base abaci.

A checker on an abacus assumes the value of the board on which it is placed.
The number represented by a coufiguration of checkers on an abacus is the sum

of the values of the checkers. For example,

724 243 8l 21 9 3 |

represents the decimal number 33 (27 + 3 + 3) on a Base Three abacus.

For each abacus, there is a rule governing the valid trading of checkers. If b

is the base number, the rule of the Base b abacus is:

b checkers on any board of the abacus represent
the same number as one checker on the next

board to the left.




For example, on the Binary abacus two checkers on a board . . .

64 32 16 8 Y 2 !

. can be traded for one checker on the next board to the left and vice versa.

6+ 32 16 8 Y 2 \

On the Base Five abacus five checkers ona board . . .
3025 625 125 25 5 |

o0

o0

. can be traded for one checker on the next board to the left and vice versa.

3125 625 126 25 5 I

| g

The standard or usual configuration for a number is the configuration that uses
the fewest number of checkers to represent it. By making trades, we can always

start with a configuration for a number and arrive at its standard configuration,

For example, the following sequence demonstrates a series of trades on a Binary
abacus for simplifying a non-standard configuration for 21 to the standard confi-

guration.
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It is clear we can put any number n on a base abacus, for we can simply putn
checkers on the ones' board. Furthermore, if we make all of the possible trades,
swe will arrive at one and only one configuration for n, namely its standard con-

figuration on the given abacus.

The following three situations are representative of the CSMP philosophy and

approach to mathematics, in particular to combinatorics.

RANDCM ART

One of Nabu's ' interests is painting. He does not paint portraits or landscapes;

he paints pictures with red and blue squares, randomly selecting the color for

t Nabu is a fictional character appearing in several CSMP lessons.

[S4N
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each square. To decide the color of each square, Nabu first outlines the pic-

ture :

-

Then for each small square he takes a red marble and a blue marble in his hands
and shakes them. He puts them behind his back and brings one marble forward.
The color of the marble determines the color of the square. He continues in

this way until all four squares are painted.

ST —.

How many different pictures with four squares could Nabu paint?

Students might suggest drawing all of the pictures, but they would need a syste-
matic way of accounting for all possibilities and of finding duplicates. One
method that will do both involves imposing a Binary abacus on the picture. We
use a Binary abacus rather than an abacus fo: a different base because there are
only two possibilities [or each square — either Nabu colors it red or he colors

it blue. Since there are four squares in the picture, we need only consider the

first four boards of the abacus.

We can set up a correspondence betwaen the paintings and the configurations on

these four boards of the Binary abacus in this manner:

43
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e Having @ square colored red is equivalent to having a checker on the

corresponding board of the Binary abacus.

e Having a square colored blue is equivalent to not having any checkers

on the corresponding board of the Binary abacus.

®
corresponds 1o 8l &

The abacus provides a way of assigning a number to each painting. The code
number for a painting is the decimal number represented by the corresponding

configuration on the Binary abacus. For example,

6 4 13

For each painting there is a unique number, and for certain numbers there is a
painting. Which numbers are they? The smallest is 0, assi, 1ed to the picture
with four blue squares; the largest is 15, assigned to the picture with four red

squares.

0

So there are at most sixteen (0 through 15) possible paintings. To be con-

vinced that all sixteen are possible, we could actually do the coloring for each
of the numbers 0 through 15; since there are few in number, this is a realistic
task. But in fact students are convinced already, being familiar with abaci

from previous activities.




There are sixteen possible paintings, but some of them are essentially the same.

v
¢
. ‘ i . .

. . by rotating any one of these four paintings, we can get the other three.

For exaniple,

Using rotations to partition the set, we get three subsets of four-of-a-kind
pictures, two subsets of one-of-a-kind pictures, and one subset of two-of-

a-kind pictures.

_ !
. 6=
|
\ "
a =
8§ _ 1
6™ 4§
£2_1
6= 8

Each of the 16 pictures is equally likely to be palinted by Nabu because of the
"one red-one blue marble" method used to select the colors. So to find the
prebability that Nabu will paint a picture from any one of these subsets, we
can take the ratio of the number of elements in a subset to the number of ele-
ments in the set. The probabilities provide a means for measuring the rarity

of Nabu's various pictures.

bode
(A
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Similar methods could be used for painting with nine squares. Again Nabu
paints each square red or blue. There are many more paintings that are possi-
ble, as expeéted. To count them we can use the Binary abacus similarly to the

way we used it for the four-square picture. This time we use nine boards of

the abacus.

256 128 64

32 16 8

4 k4 1

The correspondence between colorings and configurations of these nine boards

o% the abacus is set up as before; the code numbers are assigned in the same

way. For example,

= .

256 128 b4

corresponds to | ® = |63

32 16 8

& 2 |

The smallest code number is 0, corresponding to the picture with nine blue

squares. The largest code number corresponds to the picture with all red

squares.
] ® L
256] 128) %
® ® [
32 16 8

To find out which number is on the abacus, we could add the values of the nine

checkers. But there is a more Clever way!
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Place an extra .checker on the ones' board. The extra checker on the ones'
board sets off a chainof trades (1 + 1 = 2;2 + 2=4;4+ 4 =8; ., ..) by
the "two for one" rule of the Binary abacus. The final result is two checkers

on the 256-square.

L
[ ] o [ ] PN
_256 128 [1 256 128 b4
%t = ] | = 2x256 = 5
32 16 ) 32 16 8 2 6 2
o | o ® :
4 2 'r 47 2 I

Since an extra checker was added, the largest code number is 511 (512 - 1),
Each code number from 0 to 511 rep\resents a different painting. Therefore Nabu
can draw 512 different pictures. Thé one-to-one correspondence between the
numbers ‘0 to S11 and Nabu's paintings need not be proven in any formal sense;

previous activities with base abaci build credibility for this correspondence.

SPIES AND BRIDGES

This is the story of a spy named "Boris." Boris has six helpers whose code

names are "a", "b", "c¢", "d", "e", and "f". Each day Boris's job is to assign
each helper to observe one of three bridges. We call the bridges "0", “1", and
IIZII .

/o0 \

Boris assigns each spy to observe exactly one bridge. He might make the assign-
ment so that all bridges are covered, or just one or two. He uses an arrow pic-

ture to record how the helpers are assigned to the bridges.
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:
' One day Boris makes this assignment:

Each day Boris transmits the assignment to headquarters. He must send & se-
cret message, but the arrow picture is certainly not very secret, Since there
are three bridges, Boris decides that he could use the Base Three abacus to

produce a secret code number for each assignment and lets each of six boards

of the abacus be for one of the spies.

243 8l 27 9 3 |

The number of checkers (zero, one, or two) on a spy's board indicates to which

bridge a spy is assigned. For example,

243 8l 21 9 3 |

corresponds
° el o to

The code number for the assignment is the decimal number represented by the

correspending configuration of checkers on the Base Three abacus. The code

number for the preceding arrow picture is 714 :

(2 x 243) + (2 x gl) + (2 x 27) +9 + 3 = 714

(o0
o¢]
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Therefore, instead of sending a picture of the assignment to headquarters,
Boris, in this case, sends the message "714 .qqe 3-" When recelved, head-
quarters knows to put 714 on the Base Three abacus to determine Boris assign-

ment of spies to bridges.

The following diagram indicates how headquarters would decode the message

"200 code 3"
200 = (2x81)+ 27 +9+ (2x1)
243 B8 21 4 3 I >
[ ] [ ]
[} i ® [ ]

For each assignment there is a unique number since the assignment indicates
the number of checkers to place un each board of the abacus. For certain num-
bers there is an assignment. Which numbers could they be? The smallest is

clearly 0, corresponding to all six spies watching Bridge 0.

243 8l 21 q 3 i

The largest number corresponds to each spy watching Bridge 2.

243 8l 27 T 3 |
° e |® |0 e |eo

° ) o ° ) °
£ [ d c b &

To find out which number this is, one could add the values of the twelve check-
ers. But is there a more clever way? Repeat the trick used to determine the

largest number on the three-by-three Binary abacus.




| Place an extra checker on the ones' board. The extra checker on the ones' B
board sets off a chaln of trades by the "three for one" rule of the Base Three
abacus. The final result is a single checker on the next board to the left of

thé original six.

43 @ 21 4 3 1

. = 729

Since an extra checker was added, the largest possible code number is 728

(729 - 1). We conclude that there are at most 729 possible assignments (re-
member that 0 is a possible code word). In fact, each whole number between

0 and 728 represents & unique assignment, SO there are exactly 729 possible
assignments. This one-to-one correspondence between the numbers 0 through
728 and the assignments that Boris can make does not need to be shown formally;

prior activities with abaci build credibility for the correspondence.

Suppose that one day the enemy plans to blow up Bridge 2 and that Boris, not
knowing this, assigns the spies randomly to the bridges. What is the proba-
bility that Bridge 2 will be covered by at least one spy?

It is because the spies are randomly issigned to bridges that we have a set of
equally likely outcomes. There are many ways for Boris to make random assign-
ments ; for example, he could use a spinner circle divided into three congruent
parts, a set of random six-digit numbers from the set {0, 1, 2}, or three iden-

tical marbles labeled "0", "1", and "2".

To answer the question posed, we need to compare the number of possible as-
signments with the number of possible assignments in which Bridge 2 is covered.
We have already found the former to be 729. Let us now proceed to find the
lacter indirectly by calculating the number of assignments in which Bridge 2 is

not covered.

o0
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Consider any assignment of spies to bridges in which Bridge 2 is not covered.

Then each of the six sples would be assigned either to Bridge 0 or to Bridge 1.

Since for each spy there are only two possibilities to consider, whether a spy
is assigned to watch Bridge 0 or Bridge 1, a Binary abacus rather than a Base

Three abacus can be used for the counting.

We can argue similarly to the way we did in the case of three bridges. If a

spy is assigned to Bridge O, the corresponding board on the abacus is empty;

if a spy is assigned to Bridge 1, one checker is placed on the corresponding

board of the abacus. The smallest code number is 0 (all six spies are assigned

to Bridge 0). The largest code number is 28 - 1, or 63 (all six spies are as-
signed to Bridge 1). There is a one-to-one correspondence between the !.1mbers é
0 through 63 and the possible assignments to Bridges 0 and 1. We conclude

that there are sixty-four possible assignments of six spies to two bridges. The

probability that none of the spies wlll be assigned to Bridye 2 is about 0.09:

2 64 _
3 = 729 © 0-09

Therefore the probability that Bridge 2 is being watched is about 0.91:

729 - 64 _ 665
729 729

= 0.91
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Going one step further, we could ask: What is the probability that all three
bridges will be covered if Boris randomly assigns the six spies to bridges?

To find this probability, we need to compare the number of possible assignments
in which all three bridges are covered to the total number of possible assign-
ments. We have already found the latter to be 729, To find the former, we can
count the possible assignments in which at least one of the bridges is not cov-

ered and subtract this number from the number of all possible assignments, 729.

But we have already done most of the work! We have found that the number of
possible assignments in which Bridge 2 is not covered is 64. By repeating the
argument, there are 64 possible assignments in which Bridge 0 is not covered,

and there are 64 possible assignments in which Bridge 1 is not covered.

At first glance it might appear that there are 3 x 64 possible assignments in
which at least one bridge is not covered, but we must not overlook that in
counting both the possible assignments in which Bridge 2 is not covered and
the possible assignments in which Bridge 0 is not covered, we have twice
counted the single assignment of all six spies to Bridge 1. Likewise, we have
counted the assignment of all six spies to Bridge 0 twice and the assignment of
all six spies to Bridge 2 twice. Therefore, the number of assignments in which

at least one bridge is not covered is 3 less than 3 x 64.
(3 x 64) - 3 = 189

The number of assignments in which all three bridges are covered is 540:
729 ~ 189 = 540

If Boris randomly assigns the bridges to six spies, the probability that all three

bridges will be covered is about 0.74:

540
729

S20.74




Note that learning Boris' code for sending messages and counting the number of
assignments are worthwhile and interesting combinatorics problems in t.hemselves.
In the CSMP curriculum, only the possil?le assignments are counted. Finding the
probability that Bridge 2 is not covered and finding the probability that all three .
bridges are covered are natural extensions of the material and would be appro-

priate for students in grades 7-9 and possibly as early as grade 6.

HOW MANY PERMUTATIONS?

Angela, Barbara, Charles, Edward, Mark, and Troyce each randomly select a
piece of paper with one of their six names written on it. Unfolding the paper
and reading it, each person with his/her right hand takes the left hand of the

person named. We use an arrow picture to record the situation that results.

I hold your left hand
with my right hand

Angela Mark
Barbara p
Troyce

Charles Edwara

Notice that in such a picture, exactly one arrow starts at each dot and exactly

one arrow ends at each dot.

How many different situations could iesult from six people doing this activity?
To answer this question, we will use a grid to count the corresponding arrow
pictures. For simplicity, we'll refer to the six persons by their first initials:

IIAII , IIBIl ' IICII . IIEII ' t Mll . and IITII .

> m O m T -~
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|
{ We'll represent arrows on this grid by placing checkers appropriately. For
. example, there is an amrow from Mark to Edward. We put a checker in the {

square where the column for M meets the row for E.

i m O m ¥ -
®

Representing arrows in this way, the original arrow picture corresponds to the

configuration of checkers to the right of it.

Angela

Charles Barbara

Mark Edward gl e

Ce

Troyce

-

Because exactly one arrow starts at each dot and exactly one arrow ends at
each dot, there is exactly one checker in each row and in each column, Count-
ing the number of different arrow pictures is equivalent to counting the number

of ways to put exactly one checker in each row and in each column of the grid.
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- How many choices are there for
putting a checker in column A? ;
Six. E
Cc
B
A
A
Suppose we put the checker in row E.
How many choices are there for
putting a checker in column B? ;
E|o
Cc
.
A
A B
Only five because the checker in
column B cannot be put in row E ! .
since there already is a checker ¥ l'
in that row; in other words, two Ele X
children cannot get Edward's ¢
name. B
A
A B

We make use of the product rule for combinations here: namely, if there are
six possibilities for putting a checker in the {. st column and there are five
possibilities for putting a checker in the second column, there are 6 x 5 (30)

possibilities for assigning checkers to the first two columns.

e
ot
i

55




We continue in this manner until all six columns have been considered. Each
time, the‘number of options for a checker is reduced by one; that is, there are

four choices for column C, three choices for column E, and so on.

T o/

XX P
:Xo><><
+ XXX XX = X

X
[ To X

»

Using the product rule, we find that there are 720 (6 x 5 x 4 x 3 x 2 x 1)

diiferent ways to place six

checkers on a grid with exactly one checker in each

row and in each column.

Therefore, there are 720 different arrow pictures and,

ret

urning to the original problem, 720 Jifferent ways of assigning the six chil-

dren to hold hands.

The 720 pictures fall into natural categories involving the number of cycl. -

Such an arrow picture can have from one to six cycles.

(O]
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r The consideration of cyclles leads to a probability question: if the pieces of
paper with children's names are given out ranc?omly, what is the probability of
getting one cycle — a connected arrow picture? To find out how many of the
720 arrow pictures are connected, we'll determine how to locate six checkers
on the jrid ing such a way that the corresponding arrow picture is connected,
Each time, 5efore we place a checker, we'll count the number of:-choices for

that checker.

Let's start with A. Where could we place a checker in column A? Anywhere
except the first row. We cannot place the checker in row A because we would
have a loop at A and eventually more than one piece. We have five squares to
choose from. Suppose we choose row C and draw an arrow from A to C, that is,

Angela gets Charies' name.

T A
M T‘ QB
£
cC| @
n® c

B

o o
A L>< E

A B C E WM T

It would seem natural to cunsider column B next, but that choice leads to later
complications in the argument. Since the first arrow ends at C, we consider
next the arrow starting at C. Where could we place a checker in column C? We
cannot place 1. inrow C because there would be a loop at C. Also we cannot

place it in row A becuuse there would be a two-cycle between A and C. We have
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four squares to choose from. Suppose we choose row M and draw an arrow

from Charles to Mark.

T A
M °
E K e®
cle| X
B M c
XX H

A B CE M T

There are five choices for column A and four choices for column C, Using the
product .ule again, there are 20 (5 x 4) choices for the two columns A and C.

Having just drawn an arrow from C to M, we would next consider column M.,

We continue in this manner for the remaining four columns. Each time the num-

ber of options for drawing an arrow is reduced by one.

T ° >< >< A

M ><’ ><>< T B
€ X |

o [+ [XIXIXIXIX
XXX ;
a XXX e XX :

Having counted the choices each time, we use the product rule to conclude that
there are 120 (5 x 4 x 3 x 2 x 1 x 1) different ways to have a connected

arrow picture. So the probability of getting a connected (one-piece) arrow

. 120 1
picture is === or —=.

b R FaY
I
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? CONCLUDING REMARKS

In this paper you viewed three problem-solving situations from CSMP's Mathe-

matics for the Intermediate Grades and the methods used to solve the problems.

These activities illustrate the pedagogical role of both stories and models in
the learning of mathematics. The stories udd interest to the combinatorial
problems and foster the students' understanding of tlie situation. The various
codes demonstrate the power of models to simplify and clarify the solutions to
mathematical problems. The models provide a critical link between the problem
and its solution. We, the CSMP staff, found these methods to be particularly
successful with students in the intermediate grades and also to coordinate well

with several themes developed in the CSMP curriculum. .

Often a particular method of solving a problem has a side benefit — a bonus of
some kind. In "Random Art" and in "Spies and Bridges," the method of using
abaci to count the possible outcomes not only accomplishes the enumeration
but actually provides a device for generating a compleie list of possible out-

comes, should ever such a list be desired. (In many combinatoric situations,

constructive existence proofs are preferred.) Consider Nabu's artwork, We
count Nabu's possible works of art by setting up a one-to-one correspc’)nden'ce”
between the numbers 0 to 15 and the possible paintings, a correspondence that
we set up through the use of the Binary abacus. How many numbers there are
from 0 to 15 is evident; the enumeration of the possible paintings is accom-
plished. But should we wish to see a display of the sixteen possible works of
art, we need only to find the corresponding painting for 2ach of the numbers

0 to 15.

o
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In *How Many Permutations ?" we use the product rule as the counting device.
But recognition of the situation as one in which it is natural to employ the pro-
duct rule is aided by setting up a correspondence between certain configurations

of checkers on a grid and the permutations that we are trying to count.

The CSMP curriculum presents many techniques for solving problems. We want
to encourage students to meet new situations with a curlosity and an openness
toward new solution techniques. Such an attitude does not come readily! We
can aid its fofrnation by presenting mathematically rich situations that interest
the students and by carefully choosing the techniques to solve the problems that
arise. For if we can get to the heart of a situation by building on the students'’
mathematical experiences and by using tools natural to the situation, "e stu-

dents cannot help but be impressed by the mathematics involved and remember

its value.

In the CSMP curriculum, the activities in this paper appear in the fifth- and

sixth-grade lessons from the World of Numbers strand.

by
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Whose Triangle Is It?

Richard D. Armstrong

NN
12345678
| 36101052128
| %10 2035 56 - -
| 5163570
| 6 2l 56 -
| 728
I 8...
!.

* o

The arithmetic triangle as The arithmetic triangle as

depicted by the Chinese : constructed by Blaise Paécal

mathematician “hu Shih-Chieh in Treatise on the Arithmetic

in 1303 Triangle, published posthumously
in 1665

The arithmetic triangle, commonly known as Pascal's Triangle, has fascinated
mathematicians for centuries. In about 1100, Chinese writers and the great
Arab poet and scientist Omar Khayyam referred to algebraic patterns that suggest
their knowledge of the arithmetic triangle. In 1303, Chu Shih-Chieh depicted
part of the triangle in a book on algebra and even then described it as an old
method for expanding eighth and lower powers of binomials, for example,

(a + b)”. Much later, in the 1550's, the two Italian mathematicians Niccolo

Tartaglia and Girolamo Cardano both investigated properties of the number

61
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patterns in the arithmetic triangle and appear to have applied it to problems in
both algebra and combinatorlcs.~r A century later, Blaise Pascal (1623-1662)
wrote Treatise on the Arithmetic Triangle in which he identified and proved

interrelationships among numbers in the triangular table. Furthermore, he
developed techniques for applying the arithmetic triangle to combinatorial

solutions of probability problems.

Whose triangle is it? Chu's? Tartaglia's? Cardano's? Pascal's? Both
European and Oriental origins of the arithmetic triangle are obscure. Some
historians question the originality and, therefore, the significance of Pascal's
contributions. Still, due to his treatise, the title "Pascal's Triangle" seems

appropriate.

Wwith its elegance and basic simplicity, the arithmetic triangle can and should
also belong to elementary school students. This article presents a detective
story from lessons in the fifth-grade CSMP curriculum, prompting students to
construct Pascal's Triangle as they solve a problem about locating stolen dia-
monds. The latter part of the story introduces a code that provides a link
between Pascal's Triangle and its application to combinatorial problems. The
article concludes with a set of probability problems that demonstrates the use

of Pascal's Triangle and the code to determine probabilities.

T Most applications of the arithmetic triangle stem from either binomial expan-
sions or combinations. The appendix to this article provides examples of these
two applications.




THE STOLEN DIAMONDS |

North

T East ——pe

After taping a poster to the board, the teacher presents a problem by telling

this story. "Here is a street map of part of a city. T is the house of the famous
detective, Trek. Some diamonds were stolen from Trek's house and he suspects
that they are hidden at X. In order to find clues about who the thieves might be,
Trek decides to explore all the routes from his house, T, to the diamonds at X.
He must be careful because in this part of town all of the streets are one-way,
either north or east. Trek is driving, so he must stay on the streets. About
how many different routes from T to X do you think there are for Trek to investi-

gate?"

After tracing several routes from T to X along the one-way streets, students
discover that each such route is fourteen blocks long since X is eight blocks
east and six blocks north of T. The students' estimates of the number of differ-
ent routes from T to X typically vary from about 20 to 80. Now the challenge is

to count the number of routes,

' The two activities, "The Stolen Diamonds" and "The Burglar Suspects," are
based on the Storybook "THE HIDDEN TREASURL" by Frédérique Papy. The
collection, Stories by Frédérigue, is available {rom CEMREL, Inc., St. Louis,

Missouri.




Students first focus on the area near

Trek's house and attempt to count the

number of routes to each labeled

intersection.

By tracing, they readily find the

answers and are able to explain the

w2, 3, 4, 5" pattern. They also

note that there is only one route to

each intersection directly east or

directly north of T.

Atter several attempts, students

accurately trace the six routes from

T to P. Systematically counting all

L/bf the routes from T to R appears
formidable. During their experi-

mentation, a few students nctice
that every route from T to R must
pass through E or P, but not both.
Since there are four routes from T
to E and six routes from T to P,
there are ten (4 + 6) routes from
T to R. Symmetrically, there are

also ten routes from T to S.

North _—-9———

-

North +

—

fast ——>——
1 5
G
1 4
E
3
Cc
1 2 3 4
A B D
F 1 1 1

P R —

fast ——>——
1 5
1 4
E R
3 6
P S
1 2 3 4
1




i The insight concerning intersection

R readily generalizes. All routes to

U pass through R or S, so there are

twenty (10 + 10) routes from T to U; 10

all routes to V pass through G or R,

so there are fifteen (5 + 10) routes

North ——>——
w

© P
-}

w o=
&

to V; and so on.

X .
07 (8 e |0 lae2 924 D716 43003

Students use this addition pattern L a s e 1252 las2 92 li2er

and symmetry to quickly complete A
hls  Ds  ss |70 |i26 {210 ]330 1495
the grid. There are 3,003 different
routes from T to X! A truly unbe- L o120 135 |36 84 1120 )63
lievable result. Yet the simplicity g b 3 6 w s |2 l28 |36 }4s
Z

of the pattern quells the doubtzrs \ 2 s . s o 7 s 0

g~

in the class.

o— '

| 1 i ]
T East ——

In solving this problem, students have constructed a part of Pascal's Triangle;
though the shape of the array of numbers differs from the more common triangular
arrangements. Mathematically the choice of arrangement is unimportant, and so

Ll

we will continue to call it "Pascal's Triangle." Pedagogicaily the rectangular
amay is natural for both the story about Trek and the applications discussed

later.

Looking ahead to applications of Pascal's Triangle, it is important to realize
that the students have not only determined the number of distinct paths from T
to X, but also the number of distinct paths from T to any intermediate intersec-
tion. For example, the students' construction indicates that there are 210
distinct routes from T to the intersection six blocks east and four blocks north
ot T. The students could continue the additive pattern to find any element of
Pascal's Triangle.
Q 65
°
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l The above story about Trek following routes does not only prompt the construc-
tion of Pascal's Triangle, but also provides a model for many applicatiops of
the triangle. In fact, many combinatorial problems can he directly interpreted
as problems about counting the number of distinct routes from T to the appro-
priate intersections on the grid. The continuation of the story about Trek
introduces a binary code which provides a key link between Pascal's~Triangle

and its combinatorial applications.

"For each route Trek travels from T to X, he uses a secret code to record it in
his notebook. One day Trek writes 10110000111000 in his notebook. Can anyone

guess Trek's secret rule for writing codewords ?"

Several students agree on the X
1 7 28 84 210 462 924 1716 3003

route for the given codeword: Fo-- -

Lo s |26 fis2 as2 792 1287

|O”OOOO|“000 /\r‘, s hs_ 435 |70 lwe 210 330 495

s w {20 35 Jse 84 [120 |res

1 3 [ 10 15 21 28 36 45

North

| 2 3 4 5 2 7 8 9

4 S T (O (T O O T
T East =———p———

By finding the correct routes for several codewords and by writing their own

codewords, most students prove that they have discovered the rule: 0 ‘means to
go east one block; 1 means to go north one block. They also notice that each
codeword for a path from T to X has exactly fourteen digits : eight 0's and six
1's. This occurs since X is fourteen blocks from T, eight blocks east and six

blocks north.

How many 14-digit codewords are there with exactly eight 0's and six 1's?

3,003, ot course; due to the one-to-one correspondence between these code-

words and the routes from T to X. Trek's code itself intrigues students and,
most importantly, it prepares students to apply Pascal's Triangle to combina-
torial problems. The following episode from Trek's adventures illustraies this

role of the0-1 binary ccde.

o0 66




THE BURGLAR SUSPECTS

Trek's story proceeds: '"During hie:, investigation, Trek learns that a gang of
six thieves have stolen the diamonds. Trek has fourteen suspects and is sure
that all six thieves are among his suspects., He feels that they would confess
if he could interview all six *thieves together. So he decides to interview the
fourtee 1 suspects in groups of six. Trek draws fourteen dots, labels them "a"
through "n", and encircles six dots to represent the first group of six suspects

he will interview."

@d

.b @k
®q

"For each group of suspects he interrogates, Trek decides to write a codeword
1n his notebook. He writes 00101101010100 for the group of six suspects indi-

cated in the above picture."”

Students break the code by aligning the digits of the codeword with the letters
of the alphabet.
abcdefghiijkI mn

001011010101 00

Trek's rule ts: write a1 for each suspect in the group to be interviewed and

write a 0 for each of the other suspects,
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Students then confront the inevitable combinatorial question, "How many differ-
ent groups of six suspects could Trek interview?" Many students groan drama-
tically, but a few spontanéously respond »3,003." They notice that each code-
word for a group of six suspects must have fourteen digits: six1 's and eight
0's. Since they have just determined that there are 3,003 such codewords,
they realize that there must also be 3,003 distinct groups of six suspects.

The one-to-one correspondence is readily accepted.

The above solution demonstrates several advantages of imposing a binary code
on an appropriate combinatorial prcblem.
e Pedagogically, the code suggests to students that the current problem

might be related to earlier problems involving Pascal's Triangle.

e Mathematically, the binary code defines the one-to-one correspon-
dence between the elements of the problem and the appropriate paths

on the grid.

e The codeword identifies the precise entry of Pascal's Triangle that

is required for the problem at hand.

The following activity illustrates thzse teatures through a further application of
Pascal's Triangle to a combinatorial problem. Within a story about a custom in
a foreign country, students encounter the following problem:

in how many different ways can three brass rings and

seven silver rings be arranged on a pole!

The two types of rings suggest

O silver

O
o
-
1]
n
n

10 -1 binary code. Each codeword

will have ten digits: sevenO's 0 I
and three 1's. 8 8
] |

1] 0

1 0

i }

0 0

. 0 0

0] 0
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There is a one-to-one correspondence between the arrangements of the seven
silver rings and three trass rings on the pole and the cadewords with seven

0's and three 1's. Therefore the original problem is equivalent to the question:
"How many different codewords are there with seven 0's and three 1's?" These

codewords can be applied to Pascal's Triangle.

]
Each codeword with seven('s 7l s l2o le lo2s Ni7e l300s

and three 1's represents a route
1 6 2 Is6  h126 1252 462 [792 1287

from T that proceeds, in some

order, a total of seven blocks L B35 70 126 210 1330 495
east and three blocks north. 1 4 o 20 j3s_ Ise 184 L20 hies
All such routes end at B. The E . 3 o o hs 12 s B s las
route for 0100011000 is shown. g

1 1 1 | 1 1 1 1

* East (0 ) ——>—
0100011000

The "120" at intersectlion B indicates that there are 120 distinct routes from T

to B. Hence there are 120 codewords with seven0's and three1's. And there-
fore, in solution to the combinatorial problem, there are 120 distinct ways to

arrange seven silver rings and three brass rings on a pole.

In this problem, _.e introduction of the binary code recalled earlier applications
of Pascal's Triangle, established the required one-to-~one correspondences, .ad
indicated which element of Pascal's Triangle was appropriate for the probiem.

1he next section illustrates the arplication o[ similar techniques in the solution

of probability problems.

FAMILIES

We all know of at least one large iamily with a preponderance of boys or a pre-
ponderance of girls; the Pontello's with six sons and two daughters or the

Wiiliams' with seven daughters and no sons. Probability questions naturally

arise fr- such situations. For example, in a family with eight children, what




is the probability that there are exactly six sons? that all are daughters? that
at least six are daughters? Through application of Pascal's Triangle, combina-

torics provides a means to calculate such probabilities.

A key to a combinatc_)rial approach to these problems is to classify families
according to the sex and the order of l')irth of the childre... For example, any
family with exactly [ive children, two young boys and three older girls, is
classified BBGGG. Two families are considered distinct if their number or
order of children differ., For example,BBGB and BGBB are distinct, as are GGG
and GGGG. This classification assists a combinatorial approach to these pro-
blems because any two distinct families with the same number of children are
equally probable. i For example,BBBGG ,BGBGB , and GGGGG are all equally
likely families. The following problems employ this classification to provide

combinatorial agplicatior.s of Pascal's Triangle to probabiiity problems.

Problem 1 Calculate the prnoability that a family with eight children

has exactly six sons.

Solution: Determining this p;obability requires the calculation of:
a. The number of distinct eight-children farilies in terms of
the sequences of boys and girls; and

. The number of those families with exactly six boys.

The number of distinct families with eight children equals the number of eight-
letter codewords using B and G. By simply changing the coordinate labels,

Pascal's Triangle can be used.

t Itis assumed that the probasility of a child keing a girl is 50%.

70 7 i)
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Each eight-letter codeword refers

495 (1287 {3003 (6435 |12870

to a path of length eight, starting dx
at T. It is easily determined that \\
|
|
|
1
{

330 1792 11716 (3432 6435

all such paths end on the encircled 20 462|924 jizio |3003

diagonal. 6 1252 lae2 792 1287

N
N

210|330 {495

20\ [36 |45

ANAN!

1 1 1 1
Boy (B) =——> = .

15

*53V‘;2§§
A

5

Girl (G) =——>

126
x 84 120 165
N\
Ny
.3
1

-
9o

Therefore, there are 256 (1 + 8 + 28 + 56 + 70 + 56 + 28 + 8 + 1 = 256)
paths of length eiglit. So there are 256 eight-letter codewords withB's and G's
and also 156 distinct families with eight children. Of these 256 families, the

number of distinct families with six boys equals the number of eight-letter

codewords with sixB's and twoG's. - )
o -
All such codewords represent paths <. 9 a5 |1es jaos 1287 3003 lesas 2870
T o~
from T which end at intersection C. 18 Nlas__hao s 72 1716 [aa32 fsass |
There are 28 distinct paths from T N

| X, 28 84 210 462 {924 1716 13003

to C and 28 codewords with six \ ,
1 & N {56 \{126 [252 J4&2 792 r2s7 -

B's and twoG's.
1126 1210 330 |49s

120

Girl (G) —>
[ ,u
3 g/
/]
-]

Lk
ST
&

L” ol

) 1 1 1
BOy (B) =—=— N

Therefore, there are 28 distinct families with six boys and two girls, So the

(= —).

probability that a family with eight childicn has exactly six sons is 756
)

or approximately 0.11.




In a similar manner, each of the following problems about children in a family

Problem 2 Calculate the probability that a family with eight children

can be interpreted as a problem about codewords consisting of B's and G's and
subsequently as a problem about counting pathes on the Pascal Triangle grid.

For each problem, the appropriate entries on the grid are encircled.

has all girls.

(X
N

Solution:

45 165 |495 {1287 {3003 [6435 {12870

120 1330 {792 11716 3432 (6435

3%
28\\81 210 462 [924 1716 [3003

' ~
ﬂ\km 252 462|792 1287 P 256 0.004
N
15 35\km 2101330 95 |
s
RN

56 84 120 {165

1 3 s 0 s kza 36 |45
) 2 3418 8 7\\8 9

| \
) ! 1 1

‘_. 1 1 1 |
T oy (B) —>>»

Gtrl (G) >
> |
|
3

Problem 3 Find the probability that a family with eight children has

six or more girls.

sclution: S T “"1
™
<I % AS 165 LA% 1287 {3003 6438 LZ 870

N |

o 330|792 [1716 [3432 lea3s

e O DA

yavi

1 a4 210 |46 l924 D716 [3003
F - P - 1+8+28
1 .5
UNSCIR T < 56 252 462|792 11287 29

J 87 |

= 35 =014

126|210 [330 495

AN
120 165
3 [ 10 15 k 28 36 A5

8 ?

AN

! :—Ti:'*'

- 1)
| |

3 >

3
vl
&

@

'Y

=T

Girl (G)

T
/|

1 1 |
T Boy (B) =~——»




Problem 4 Find the probability that a family with six children has

exactly three boys.

Solution:
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SUMMARY

Pascal's Triangle is a powerful device for investigating many probability pro-
blems through a combinatorial approach. Motivated by a detective story, stu-
dents can discover the basic additive pattern of the array of numbers. Not
only does the story lead to the construction of Pascal's Triangle, but the story
also develops a binary code that proves very useful in aprlying the trianyle to
solve combinatorial and probability problems. This set of activities demon-
strates how a rich problem-solving situation can motivat. a mathematical
concept, namely Pascal's Triangle, and a'so lead to understanding and appli-
cations of that concept. With this upproach, problem solving Lecomes both a

means and an end in mathematics education.

Whose triangle is it? Chu's, Tartaglia's, Cardano's, Pascal's, and any student's

who learns its power and recognizes its elegance.




In the CSMP curriculum, the activities described in this paper appear in the
fifth-grade lessons from the Workbook strand, the sixth-grade lessons from
the Language of Strings and Artows strand, and the sixth-grade lessons from

the Probability and Statistics strand.




APruNDIX

The earliest and most fundamental applications of Pascal's Triangle involve
either binomial expansions or combinations. In algebra, the elements of
Pascal's Triangle indicate the coefficients of the expansions »f expressions

such as (a + b)7.

1
The eighth row of Pascal's

P21
1 3 3 | Triangle provides the
I ¥ 6 4 1 coefficients for (a + b)7.
I 5 10 10 5 1 (a + b)7 =

la? + 7a®b + 21a®b® + 35a%*b°®

b 6 16 20 15 6 |
C' 7 21 3 35 21 1 Ij + 35a®b* + 21a®b® + 7ab® + 1b”’
| 8 28 5 70 56 28 8 |

th .
In general, the (n + 1) row of Pascal's Triangle provides tfrl_e coefficients
n )
. 4

for (a + b)

A fundamental question in combinatorics is to determine the number of distinct
subsets of a specific size of a given set. For example, "How many different

1 4
three-person subcommittees can be foimed from a committee of seven members ?"

!
A

13 3 ‘ 1 t of the eighth row of
element o ro
I % 6 4 &9

I 5 10 10 5 | Pascal's Triangle.
l 6 15 215 6 |
7 21(35)35 21 1 |
| 8 28 56 70 56 28 8 |

The answer, 35, is the fourth

In general, the ..umber of subsets ./ith r elements from a set with n elements is

the (1 + l)th entry in the (n + 1)th row of Pascal's Triangle. Further combina-

te.ial application. »f Pascal's Triangle appear in this paper.




An Area Model for Solving Probability Problems '

Richard Armstrong

Most American children have an intuitive concept of randomness, partially due
to games involving dice, spinners, and cards. Since rQbability provides a
rich source of problem-solving experiences, we decided to e"x{end our students'
informal experiences and include probability as an integral paer our elemen-
tary mathematics curriculum. The article, "Probability and Stat/istics in Grades
1to 3," in this book describns stories and games for second and third grades
which introduce concepts such as expected frequency, equally likely events,
and prediction. The students' reactions to these activities indicated to us
their capability of progressing to the analysis of one-stage probability experi-
ments through combinatorial methods. In one third-grade lesson, tlie students
censidered the thirty-six equally likely outcomes when two dice are thrown
and determined that there are six ways for a suin of seven to occur. Thereby

1

they calcuiated that the probability of rolling a sum of seven is -\:3% or 5

Their success and enjoyment in analyzing several one-stage probability situa-

* .18 demonstrated that these students were capable of considering more complex
riultistage experiments in the intermediate grades. However, traditional arith-
metic solution technigues of such problems tend to require either unwieldy
combinatorial analysis or a well-developed u.deistanding of the addition and
rr;ultiplication of fractions. Of course, the consideration of these problems
could be postponed to later grades, but even for more mature students the com-
putational aspects of arithmetic solutions often tend to obscure rather than

illurninate the underlying probabilistic concepts.

The need for an alternative model for solving probubility problems became ap-

parent. To be appropriate for intermediate grade students, we thought the model

t This paper appears in NCTM's 1981 y&arbook, Teaching Statistics and
Probability. \ ’78
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should —

e be sufficiently powerful to handle fairly sophisticated probability

problems ;

e rely primarily on mathematical skills that the students have already

acquired;

e be consistent with the students' current understanding of probabilistic

concepts;

e support the eventual development of more advanced solution techniques.

Considering that most probability situations intrinsically involve fractions and
that a common model for fractions involves the partitioning of circular or rec-
tangular regions ("pies" or "cakes" ), perhaps it is natura_l that we developed
a geometric model to satisfy the above criteria. In this model, a unit square
is divided into regions so that the areas of the regions are proportional to the
probabilities involved in the situation. The following three activities indicate
the use and development of this model and moreover illustrate its pedagogical

and mathematical characteristics.

-r
MARRIAGE BY CHANCE

Mr. Simons, a fifth-grade teacher, tapes a poster on the board and with appgro-
priate embellishment tells the following story, occasionally allowing students

to react and comment.

—

ENTER —>

t This story is inspired by a popuiar short story, "The Lady or the Tiger?" by
Frank Stockton which appears in A Storyteller's Padk: A Frank R. Stockton

Reader, Scribner, 1968.
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"The king and queen of a medieval kingdom arranged a marriage for their daugh-
ter and Prince Cuthbert from a neighboring kingdom. The princess accepted
this plan without enthusiasm. A short time before the proposed wedding day,
she met Reynaldo — handsome, clever, romantic, but only a peasant. Their
love developed quickly and secretly, but inevitably the king learned of their
relationship. Irate, he ordered that Reynaldo be thrown into a roorm full of
tigers. But in response to his daughter's pleas, he offered a compromise :
Reynaldo would walk through a maze, each path leading to one of two rooms.
While the hungry tigers waiEin one room, the hopeful princess waits in the
other room. If Reynaldo enters the latter room, he and the princess could

marry."

Pointing to the poster, Mr. Simons continue®< "The king showed the princess
a map like this one of the maze and let her decide in which room to wait. Re-
member that Reynaldo does not have a copy of the map and can only guess
which paths to follow. Which room is he more ltkely to enter, A or B?"

Some students suggest that Reynaldo's probability for entering each room is —g—,

or -lz because there are three doors into each room. However, other students
realize that the answer is not so obvious, since Reynaldo is more likely to
arrive at the third door from the top than at other doors because there is a path
which leads directly from the entrance to the third door. After more discussion,

the majority of the class votes that the princess should wait in Rcom B.

Mr. Simons draws a large square on the board and suggests,

"Let's use this square to determine the probability that

upper path
Reynaldo will enter Room B. When he enters the maze, pper P
what is the first choice Reynaldo must make?" When a middle path
student responds that Reynaldo must choose to take the lower path
upper path, the middle path, or the lower path, Mr. Simons

adds some information to the square.




o S

"I've divided the square into three equal parts, since

1i hos

each of the three paths is equally likely to be chosen voper path

by Reynaldo," explains Mr. Simons. "What happens xd

if Reynaldo chooses the middle path?" A student ob- P

serves, "He's lucky and walks straight to the room lower path

where the princess is waiting."” Mr. Simons shows

this by marking "P" in the center section of the square.

He continues, "What happens if Reynaldo chooses the P DT R

upper path?" Observing that the upper path splits into

two paths, the students state that Reynaldo's chances P

of reaching each room would then be the same. They lower path

agree to indicate this by dividing in half the part of

the square labeled "upper path." )

Then the class correctly divides and labels the region P T

for the lower path. | P
PIT|T
Q Princess

For contrast, Mr. Simons colors gray the regions ‘ ‘ T,igers

marked "P" and red the regions marked "T".

Looking at the square convinces the class that they

| " . _ O Princess
have placed the princess in the correct room, since P lTigers

more than half the square is colored gray. Mr. Simons

agrees and inquires how they could calculate exactly

Reynaldo's probabthity of {inding the princess. With

hints and encouragement, the class decides to divide

the square into small pieces all the same size and to

count the number of gray pieces and red pieces.
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Out of eighteen pieces of the same size, eleven are gray and seven are red.
Therefore, Reynaldo has eleven out of eighteen chances to find the princess.

11

2
His probability of success is 18" or almost ER His success is not guaranteed,

of course, but the class did place the princess in the better room.

Some students a. first were intent on finding clever ways for Reynaldo to detect
and avoid the tigers. Rather than being out of place, this humorous diversion
emphasized the need to accept certain restrictions when a situation is being
modeled. As in real-life applications, the situation had to be idealized. An
advantage of embedding a pré)blem in a story instead of using a real example is

that the necessary restrictions can be minimized and well controlled.

solving several more probability problems presented in story contexts prepaies
the students to consider a famous problem from the early history of probability

theory - problem which reguires more sophisticated mathematical insights.

A PROBLEM OTF POINTS

In the history o: mathematics, the first probability questions arose from games
of chance. One particularly intriguing problem, now called the "problem ot
points," ppeared as early as the fourteenth century. The following is an exam-
ple of the problem. Two gamblers play a game for a stake which goes to the
first player to gain ten points, If the game is stopped when the score is 9 to 8,
how should the stake be divided between the two players? It is assumed that

the players have equal chances of winning each point.

This problem was popular and controversial in Europe in the sixteenth and early
seventeenth centuries. In 1556, Tartaglia claimed to have the solution but si-
multaneously declared that any solution is "judicial rather than mathematical, "
that 1s, it must be agreed upon by the two players (an astute commentary on

applied mathematics!).

In 1654 Antoine Gon.bard, the chevalier de Méré and a member of King Louis

XiV's ccurt in France, encountered the problem through his interest in mathematics

and gambling. Being an unsolved problem, he proposed it to a young mathema-
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tician, Blaise Pascal. The ensuing correspondence between Pascal ana an
older triend, Pierre Fermat, reveals that they developed three distinct tech-
niques for correctly solving this problem. The application of these technigues
to other probabilistic questions provided an impetus to mathematicians and

eventually led to the development of modern probability theory.

Embedding the problem of points into & children's game and using the area tech-
nique ollows intermediate grade students to solve this historically significant
+

problem.

Let's listen to Ms Kell as she describes a game to her class. "Rita and Bruce
play a game. Rita has one red marble and cne blue marble. With her hands
behind her back, she mixes them and then puts one marble in each hand. Bruce
chooses a hand. If he selects the hand with the blue marble, he scores one
point. Otherwise Rita scores one point. The procedure is repeated, and the

winner is the player to tirst score ten points."
Rita |

t(

M

Bruce

I

Arter playing the game a few times in class, Ms. Kell suggests the following
situation. "One day, Rita and Bruce must stop a game when the score is Rita 9
and Biuce 8. 11 they continue the game the next day, what is the probability

that Rita will win 2"

The Belgian math educators, Irederique and Georges Papy discovered this
solution technigue for the "problem of points." Their solution revealed to onr
staft the potertial of the method in many other situations.
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After discussing the game and making some estimates, the students use a

square to analyze the situation:

9-8
If the score is 9-8, the next score
will be 10-8 or 9-9 with equal like- 10-819-9
lthood. Iivide the square into halves.

{
$-8

Rity wins it the score 1s 10-8. Color
the appropriate region red for Rita, 9-9

I the score reaches 9-9, the game is
:a1r. Color half the appropriate regiocn

rec tor Rita and half gray for Bruce.

Three-tourths of the square is colored red and one-fourth gray. Therefore when

Rita 1s leading 9 to 8, the probability of her winning is % and the probability of

1
Bruce winning is 1 Because of the symmetry induced by using one red marble

and one blue marble, we can immediately conclude that if Bruce were leading

3
% to 8, his probabillity of winning would be 7 and Rita's probability of winning

would be -}i- \
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The solution for the problem when Rita is leading 9to 7 is similar and reveals

a useful shortcut.

q-7
If the score is 9-7 . the next score will
_ I0-7{9-8
be eith. 10-7 or 9-8, with equal likelihood.
q-7
Rita wins if the score is 10~7.
-8

For the intermediate score 9-8, we could
consider the scores 10-8 and 9-9. But the
previous argument shows that if ita leads
9-8, her probability of winning is —3- There-

4
tore the region for "9-38" can immediately be

colored —i— red and —111- gray.

Once the square is divided into regions of the same size, there are seven rad
pieces and one gray piece. Therefore, if Rita is leading 9-7, her probability

o .7
of winning the game 1s iR

R applying the area technicue, students can now determine Rita's and Bruce's
winning nrobabilities for any intermeaiate score. Such a task appears uninter-
esting and tedious. However, the use of the area technique has sujgested a
very raturxl application of the concept of recursion — fcr example, using t‘ime
computed result for the "9-8" problem to shorten the solution of the "9~7" pro-
biem. In fact, by detecting patterns, using recursiun, and occasicnallv em-

nloy. ig the area technique to check hypoiheses, a class is able to determine
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quickly Rita's and Bruce's probabilities of winning at any intermediate score.

The following chart indicates the odds (Pruce: Rita) for winin‘ng a game to ten
points when each player has at least five points. Readers are 1nvited to check
the results, detect and contirm patterns, and thereby extend the chart to include

lower intermediate scores.

ODDS OF WINNING (BRUCE : RITA)

Q|30 |15y 750 3 N

815711 |26 11:s 4: 4 1:3

?;:;fn;zdiate 7_iq:2q 42:22 | i6:l6 5011 117
Scora 61163:93 | 6464 | 22:42 b 26 1:15
£1256:25¢| 921 165(29:99 | 7:57 | 1:31

5 b 7 8 9

Rita's Intermediate Score

This solution of the problem of points by the area method is similar tc one of
the solutions of Pascal and Fermat in that each depends on a :echnique’of par-
titioning. However, instead of partitioning a region, Pascal considered the
partitioning of a stake of 64 pistoles (units of money). Also, each solution
uses a different justification for its partitioning. Of Pascal and Fermat's other
two solutions, one relied on combinatorics and the other on the addition of
independent probabilities. Secondary school mathematics students could gain
some ‘valuable insights into probakility by solving the problem of points on
their own and then comparing their solution to Pascal and Fermat's three solu-

tions.

Al interesting extension to the problem of points occurs if Rita and Bruce use
two red marbles and one blue marble in their game. The altered patterns anu
recursions rellect the influence of the asymmetry induced by the new marble

mixture,




AN ARCHERY GAME

Modeling the analysis on a sguare provides several pedagogical advantages
tor solving probability pro-lems. Pictorial representation of the analysis pro-
vides visual insights into probability concepts. Reliance on geometric skills
allows the development ot concepts, which a lack of arithmetic skills would
normally impede. Division of a region in proportion to the appropriate proba-
bilitles appeals to the students' intuitive understanding of probability. But
th1s solution technigue also provides a mathematical advantage by producing a
less complex solution for certain types of sophisticated probability problems.
for example, the probability problem presented in the following story involves

an infinite Markov chain,

2 1
As archers, Rita hits the target 3 of the tirm2 and Bruce hits the target 3 of the
time. They decide to have 1 contest. Letting Bruce shoot first since he is the
poorer atcher they alternate shots until one wins by hitting the target. Who is

favored? What is each contestant's probakility of winning ?

QO Bruce wins
@ Rita wins

-

Use a square to calculate the probabilities.

) 1
Bruce shoots first and has a probability of 3

of * _ing the target and winning immediately.

. 1
Color 3 ot the square gray.

I, “"ruce misses the target, Rita shoots and wins

by nitting the target with a probability of -g- Of

2 .
the colored regior., color 3 of it red.




Netice that the ratio of the area of the gray regions to the area of the red

regions Is 5: 4.

If both shots have missed, Bruce shoots again, and

his probability of hitting the farget is —;—

If no one has hit the target, Rita shoots again, and

her probability of hitting the target is -é

Notice that for the newly colored regions, the ratio of the area of the gray

regions tu the red regions is again 5: 4, Therefore, for all the colored regions,

the S: 4 ratio is maintained.

b g

Continuing the process, the uncolored region
gradually vanishes and the ratio of the area of the

gray regions to the area of the red regions is

always 5:4.

Therefore, it is plausible (and correct) to conclude that for this archery contest
the ratio of Bruce's chances of winning to Rita's cnances of winning is 5: 4.
> _ or —5-. Shooting first provides

S+ 4 9
a suffi~ient advantage to overcome his lesser skill.

Thus, Bruce's probability of winning is

The probability problem involved in this archery cou. .est is an example of a

Markov chairn, The area technique provides a solution that does not require

advanced algebraic processes such as matrix multiplication, summetion of
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infinite series, or the formation and solution of linear equations. Of course,
the tntuitively appealing conclusion that a particular ratio is maintained through-

out an infinite process is assumed but not proven at this level.

PERSPECTIVE

A desire to allow intermediate grade students to progress in their understanding -
of probability concepts without relying on a .omprehension of the multiplication
and addition of fractions motivated the development of this area technique.
Obsarving the students' ability to apply this model to solve fairly sophisticated
probability problems and listening to their responses convince us that this goal
was achieved. Besides its pedagogical ad.antages, this area technique pro-
vides simpler solutions to certain advanced problems such as some Markov

chain problems.

However, we do rnot suggest that this area method should supplant other ap-
proaches to probability. Other representations, for example using probability
trees , provide further insights into probability topics. As problems become
more complex and lead to general theories, the use of variables and algebraic
techniques become a necessity. Therefore we suggest that a strong background
for probability be built in the intermediate and m:ddle grades by parallel deve-
lopment of these topics: numerical ckills with rational numbers; analyses of
probability problems by conbinatorial methods, by this area technique, and by
using trees; statistical experiences which include the concept of expected fre-
4uency; and an introduction to variables. Each of these topics by itself is
appropriate in the intermediate grades and taken together would provide students
the ability to model ana solve realistic, fascinatiny probability and statistical

problems in later grades.

In the CSMP curricul'm, the activities described in this papcr appear in the

fiith- and sixth-grade lessons from the Probability and Statistics strand.




Breaking a Stick: Probability Without Counting

Joel Schneider

Probability 1n schocl mathematics curricula commonly occurs in f.nite situations,
for example: What are the chances of picking a white ball from a collection of
white balls and black balls? By contrast, consider this problem: If a stick is
broken at two points chosen 3t random, what is the probability that one may
construct a triangle with the three pieces? Some breaks yield a triangle; for
example, all three pieces might be the same length and giva an equilateral
triangle. Some breaks do not yield a triangle; for example, two of the pieces

might be very short.

z <~

Succes

e
e

Of course, there are an iniinity of choices for the breaking points and so no
simple counting of successes is possible. QOur approach of using a geometrical
device to represent the problem is based on an icea of Castelnuevo (Proceedings
of First International Congress on Mathematical Education, Dordrecht (Holland),
D. Reidel, 1969) and modified by G. Papy (1977 seminar at CEMREL Inc., St.
Louis). Using a geometrical approach to a probability problem is a particularly

attractive example of cross-fertilization among areas of mathematics.

The students' experiences of geometry throughout CSMP is informal and largely
based on the use of -several tools : tne compass, the straigntedge, and a device
for constructing parallel line segments. One application of the last tool is in
effecting parallel projersiions, providing one of the basic experimental construc-
tions with which to study the problem. Developing the geometrical prerequisites
and solving the probability problem occupies weekly lessons for most of a semes-

ter for a class of sixth-grade students. This article describes the content of

the .essons.
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THE TRIANGLE INEQUALITY

When can three line segments be used to build a triangle? The Triangle
Inequality provides a ready test to answer the guestion in terms of the relative
lengths of the line segments. An informal statement ot the Triangle Inequality
is that the distance (x) trom one point (A) directly to another (B) is at most

the distance (y + 2) taken via a third point (C).

¢ A
C Y /
y 2 z
A > N A
X B X
B

X<y + 2z X<y + z X

In general, for any points A, B, and C, x = y + Z. F-om this we deduce the

Triangle Inequality: Any two sides ot a triangle together are longer than tue

third side.

C B

Z z z B
y h 4 c C X

B
A y
y

X

A A

In cll cases,

x+y>z,x+z>y,andy+2>x.

Tha s.atement ot the Triangle Inequality is direct and simple, almost obvious.
But appreciation of its gnificance usually requires experience. In the CSMP
curriculum, the students' discovery oi the Triangle Inequality follows a sequence
of activities in constructing polygons under a variety of constraints on their

| sides. We begin the sequence with inforinal sketches of shapes to clarify the

idea of polygon. The object of the discussion is to narrow the concept without

o
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resorting to formalism. Examples . .

OAOVIO

and counter examples .

D@

lead to recognition of polygons (more formally, "simple closed polygons").
With the idea of polygon secure, we attempt to construct polygons under con-

straints on the lengths of the sides.

Duplication of line segments is basic to these constructions. The available

tools are a compass and a straightedge. The following sequence of constructions,
posed as problems, enables students to develop their facility with the tools as
they respond to increasingly restrictive constraints cn the number and length of

sides of polyguns.

Problem 1: Construct a poiygon with eight sides, all having the same

length.

Many solutions are possible; students each construct several.

O <> 24

The key to the construction lies in drawing the sixth side so as to bring the ends
of the chain of sides close together. Then the seventh and eighth sides close
tlhie shape. There are usually two choices for the location of the last corner and

these are located by finding the intersections of the arcs centered on the free
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endpoints (A and B) as shown here.

The last corner must be

one of thase twe points,
located with o COmpass.
Thus there are two ChoiCes
for seventn and exghth sides

¥

Several experiences with this problem, with varying nunibers of sides, provide
students an opportunity to develop a good sense of the use of the compass in
constructing polygons under a simple constraint. The constraint is so simple
as to allow the students to concentrate on developing their techniques. Through
studying this problem with several numbers o. sides. we discover the fact that
while there are many solutions with 8 sides, with 6 sides, and with 4 sides,

there ic only one solution with 3 sides, namely the equilateral triangle,

Problem 2 Given two line segnients, diaw a quadrilateral so that each

side is the same length as one of the iwo segments.

Unce anzin there are many solutions. By comparing their solutions, the class
discovers that they fall naturally into families. There are five combinations of
sides: all short, all long, one short aad three long, three short and one long,
and two short and two long. The first two cases appeared along with Problem 1;

there are many solutions, but each is a rhombus.

L




In the case of one short and three long, there is again only one family of
solutions. If we classify with respect to the arrangement of sides, there is

only short-long~long-long, even though the shape may vary. For example,

and

The case of three short and one long is similar; there is only one family of

solutions, short-short-short-long. Again the shape may vary; for example,

S S S
S S /\
/\ and S

L

The case of two short and two long is more interesting since there are *wo
families of solutions, depending on the c.der of the cides in rotation: short-
long-short-long or short-short-long-long. The first sequence results in a

parallelogram and the second in a kite or a wedge.
] ]

parallelogram kite wedge

Drawing the longer diagonal in red in several examples of the parallelogram

suggests a comparison of the diagonal with the two unequal sides of the parallel-

ogram.

L L L
s
L L
L

)
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There are many parallelograms that solve the problem, their diagonals are
different in length, but experimentation suggests that the diagonal cannot he
longer than the combined length of the long side and the short side. An exa-

mination o! the kites leuds to the same conclusion,

N
\/S

With a good sense of the construction techniques and with an introduction to

an interaction of lengths of sides, students are ready to focus on triangles.

Problem 3: Given two line segments, construct triangles so that every

side is the same length as one of the segments.

The case 1n which all segments are the same length was settled before; only an
equilateral triangle is possible. There are two other combinations of sides:
short-short-long and long-long-short. In examinring the problem with various
pairs of segments, two situations arise. In some cases, two triangles can be

constructed : in other cases, only one triangle can be constructed.

N
S// /LQ %QSL>

~> L
S L

Of course, the attribute that determines the number of triangles is the relative
length ot the segments. And the rule to be discovered is that two triangles can
be constructed if and only if doubling the shorter segment exceeds the longer
segment, a special case of the Triangle Inequality. This instance of the Tri-
angle Irequality is especially attractive in that each combination of short and

long segments yields at least one t iangle.




Probiem 4 Given three segments, construct a triangle such that there
is a side that has the same length as each of the given

segments,

As before, provided with several sets of segments, students experiment,

succeed, and fail in constructing triangles.

Successes
railures
The successes and tailures {ndicate the Triangle Inequality: Three line seg-
ments can be used to construct a triangle if and only if the two shorter seg-

meats together exceed the longest — that is, any two sides of a triangle together

exceed the third in length.

Notice that this development of the Triangle Inequality does not involve mea-
surement of the line segments, but only direct comparison of their lengths,
accomplished easily with a compass. However, we can immediately pass ‘¢

arithmetic if appropriate. Tor example, segments of lengths 3 cm, 6 cm, and

8 cm yleld a triangle because 3 cm + 6 cm > 8 cm, but lengths of 5cm, 6 cn,

and 12 cm do not yield a triangle since 5cm + 6 cm < 12 cm.

With the Triangle Inequality and with extensive experience in constructing
polygons given several line segments, we are ready to return to the original

problem.
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BROKEN STICKS

Break a stick into three pieces. Label the pieces "AY, "B", and "C",

A B C

According tc the Triangle Inequality, to make a triangle any two sides must be

.7 longer than the third side. In particular,

A and B together must exceed C,
A and C together must exceed B, and

8 and C together must exceed A.

By examining many broken sticks and comparing the lengths of their pieces, we
notice a pattern. Look at the largest piece, say it is C. How long can it be

if we are to construct a triangle? If the stick measures 100 cm, whatever the
length ot C, A and B make up the remainder. C cannot be too long — if C is 80
cm long, then A and B together are 20 cm long, but in order to form a triangle
they must exceed C. Hence C cannot be 80 cm long. More generally, if C is
more than halt the stick, then A and 3 together are less than half the stick and
no triangle can be constructed. But if C is the longest piece and C is less than

halt the stick, then A and B together are longer than half the stick and the three

pteces yield a trianjle. This conclusion suygests a modified version of the
Triangle Ineguality: It a stick is broken at two points chosen at random, one
can construct a triangle with the pieces if and only if each piece is less than

half o the stick.

We represent the stick as a line segment. The first task is to cnoose two
breaking points at random. Random choice is familiar from other situations in
the probability strand, but the simultaneous random choice of two points is a
new problem. For this we recall some ideas from earlier work in geometry.
Coordinates on a grid provide a link between a pair of points and 3 single point.
That is, two points (one on each axis ) identify a single point on the plane and
vice versa. Regardless of the orientation of the axes, the linking mechanism

in the constructions is parallel projection along the axes,
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kandomly selecting two points on a stick requires a slight modification: we
make both projections onto the same line. Thus given a line in the plane and
two directions tor projection, shown by the red and the blue lines in the follow-
iny illustration, each point in the plane produces two points on the line through

parallei projections.

[t we consider only one of the half plares, then choosing one point in the half
plane at random 1s equivalent, thiough the dual prcjections, to choosing two
points on the line at random. This technique provides the random device for

breaking our stick at two points,

We mark a segment, PQ, of the line to represent the stick., Points in the plane
proyuce two, vne, or zero points on the stick through the dual projections. We
experiment to :ind the set B (shaded in the next illustration) of points in the

half plane that corresronds to pairs of points on the stick.

B consists of all points
inside this triangle.
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Having developed a means to effect the simultaneous random ch‘oice of two
points of the stick, the probability question is: Which {)oints in B correspond
to points at which to break the stick into three pieces that can form a triangle?
The Triangle Inequality provides a useful criterion to apply to the pieceé. We

need to find a criterion for deciding whether a point in B will yield a triangle.

After sufficient experience with dual projections, we normalize the representa-
tion by choosing projections that result in an equilate-al triangular region for
B. Coloring the segments of the stick red, black, and blue provides a conven-

ient notation for discussing the problem.

B consists of all points
inside this triangle.

< / \ >

Now we can experiment by cnoosing a point in B, performing the dual projections

and attempting to construct a triangle.

Success Failure
In experimenting with many choices of points in B, students classify points in

B as ". uccesses" or "failures" and discover that they fall in clusters.

® Success

O Failure




The dots representing failures appear in three clusters; three clusters — three
segiments — three colors. We explore the result in terms of the red, blue, and
black segments. Of course, varying the choice of a point in B results in vary-
ing lengths for red, blue, and black segments. When can the three segments

be used to form a triangle? The Triangle Inequality, dis;overed earlier, reveals
that each must be less than half of the stick. Through many experiments, chcos-
ing a point in B, performing the parallel projections, and testing the segments,

we find the points that give too long of a black segment appear to cluster to-
gether. And the same is true for points giving too long of a blue segment and

points giving too long of a red segment.

Points in this triangle
give black segments
A & that are too long.
/// \\x 7 w
Points in this triangle

give red segments
that are too long.

Points in this triangle i

give blue segments ~——y

that are too long. A

\

We can ceitify that the three sets of points do cluster and locate the boundaries

of the clusters. The points of B that yield red, black, and blue segments, all

of prover length, are those in the central triangular region S.

The ratio of the area of S to that of B is one to four. The problem is solved.
The probability of breaking a stick into three pieces with which we can form a

triangle is 'zli' .
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In the CSMP curriculum, the activities described in this paper appear in the

sixth-grade lessons from the Geometry and Measurement strand.
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Shunda’s Newsstand

Clare Heidema

The business world offers many opportunities for statisticians, especially in
advising decision-making processes. Elementary school age youngstérs in
their everyday lives also are confronted with decision situations, some with a
business flavor, where a rudimentary understanding of statistics may prove
useful. However, the pedagogical concerns of making the study of these
situations accessible at an early age often prohibits consideration until the
problems can be discussed on a high mathematical level. Consider, for exam-
ple, the classic "Newsboy's Problem" concerning a newspaper seller attempting
to maximize profit. Children can appreciate such a problem; indeed they may
have paper routes or operate newspaper stands themselves. SF UNDA'S NEWS-
STAND provides an excellent example of how an operations research problem
involving statistics in a decision-making context can be presented at the ele-

mentary school level.

Crucial to the presentation of the problem in terms that fifth-grade students can
understand is the use of stimulating pictures to view the sarmple data in a variety
of ways. The pictures and graphs provide an alternative to technical numerical
methods ; an alternative tha: is both aesthetically and pedagogically appealing.
This approach illustrates two goals of CSMP: (1) to present the best of mathe-
matical content essential for understanding the nature of mathematics and its
ever-increasing applications to diverse situations in the real world; and (2) to
engage youngsters immediately and naturally with the content and applications
of mathematics, making mathematical ideas accessible to young children through

the use of non-verbal languages.
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SHUNDA'S PROBLEM

A coramon problem in the business world is to determine the optimal quantity of
items to buy or produce in order to make the most profit. Many factors affect

such decisions and no one can be guaranteed of always making the best choice.
Still, educated decisions can be made by doing a careful study of sample data
and by assuming that past behavior of the consuming public is a good predictor
of future behavior. There is always a risk; all one can do is decide what is the
most reasonable prediction. SHUNDA'S NEWSSTAND is concerned with such a

business world problem as it affects Shunda, a young newspaper seller.

We present the situation in a story—workbookT, that is, as a story told in the
pages of a "comic book." Along the way the students respond to questions and
solve intermediate problems. They become familiar with a variety of pictorial
representations of information and supply the necessary cezults needed to under-
stand the main problem. Prompted by a series of stimulating pictures for record-
ing data, the students use the daily demand to determine the most profitable

inventory of newspapers.

The CSMP Library

MATH STORY WORKBOQKS

Our story is about Shunda, a newspaper s-21101

seller, who has a newsstand on the
corner of Hamilton Street and Euler
Avenue. Each day between 4:00 and
6:00 PM, she sells newspapers to

people passing by her stand.

(7
| @

L

t SHUNDA'S NEWSSTAND is in The CSMP Library, a collection of math story-
workbooks providing fanciful excursions into the colorful world of mathematics.

% In this paper, we use actual reproductions (in reduced form) from the booklet,
omitting color except where it is essential to the presentations.
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Several pages at the beginning of the booklet present basic information about
Shunda's job. Shunda buys newspapers from a dealer for 10 cents each, and
she sells them to her customers for 20 cents each. Since the number of

Shunda's customers varies from day to day, the dealer agrees to buy back the

unsold papers for 5 cents each.,

For each newspaper SG.D, Shunda makes a gain of 10 cents. For each newspaper RETURNED, Shunda has a loss of 5 cents.
‘ e\
9 — o —
Sl= + ]O = |0 centsqain S|= 5 = 5 cents loss
&
3 4

Q
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Shunda wants to have a successful business and to make as much money as

possible. She devises procedures for neeping records of her business from day

to day. .
=] = '
S| saumees | S|1S SHUNDA' S BALANCE SHEET FOR ONE DAY
“ & |l
4:00em 6:00pm
SUPPLY FINAL SALES
¢4\ » 12
; 5&& '_ N Returned
l 1 ";3'.4-* ’ k ]
=Y e -
I \ .
L] -
. O u
Il I -
I X - 0
? B Sold
SUPPLY QAH‘J_ LOSS PROFIT
One newspaper SOLD balances two newspapers RCTURMED | 22 ﬁ * %
newspapers |.00 60 4}0
5 6

The students now work through several pages of practice using Shunda's record
keeping procedures. We will display only selected pages from the booklet to

demonstrate the variety of pictures and the nature of the individual work.




the demand to be.

Shunda begins her newspaper business as an apprentice and so is allowed to

buy differing numbers of papers from day to day depending on what she expects

ONELECTION DAY. ..

Shunda bought
She sold
She returned

newspapers.
newspapers .
newspapers.

SHUNDA' S

()

Profit-o-meter

BALANCE SHEET

GAIN

10SS | PROFIY

10

These pages ask students to read graphs and to calculate Shunda's daily profit.

The stylization on page 10 reflects Shunda's whimsical side. Such artistic

freedom requires little or no explanation, and it contributes to the students'

experience viewing data in a variety of ways.
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i On days when Shunda has a positive profit, she is happy; when she has a
negative profit, she is unhappy: and when she breaks even, she shrugs her

shoulders and hopes for a better next day.

Complete: Complete :

13

Students must use only the red:blue ratio to determine Shunda's mood or sales
on several days. This step suggests the critical role in Shunda's business of
a one-third, two-thirds ratio of returns to sales. Later we will cee how these

pictures contribute to a way of determining a most profitable inventory.

The story continues with new information that presents Shunda's main problem.
The training period for Shunda will end shortly. Then she will have to follow

stricter rules; the dally supply of newspapers will have to remain constant:

the same number every day. Shunda must decide what constant daily supply
would be the best to buy from the dealer. How can she make such a decision?
In order to determine the best daily suppliy of newspapers to buy from the dealer,

Shunda keeps a record of the daily demand during an experimental twenty-day

period.
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Students draw a graph of Shunda's sales record.
Shunds started her newspaper business as an apprentice Her learming mdl
training peitod wil end November 15th  After that day, she will havelo
fotkow stricter rules and the datly supply of newspapers she buys will have AN . B .
10 remain CONSTANT the same number every Gy  1n order to discover H,Y:,,"::,:,,',:,',.,.—:H~—
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Shunda hopes that if she can determine what would be the best constant supply
during that experimental period, then she can expect it also to be the best con-

stant supply in the future.

Before proceeding towards a soluticn, students stop to express their opinions
on Shunda's decision. Such a proktem interests 10 to 12 year olds; they may
be just beginning to earr. their own spending money. This discussion can bring
out the students' natural curiosity about business matters; it tests their intui-
tion about implications in the statistics for a twenty-day experimental period.
Our experience suggests that students will think of a variety of ways of view-

ing the data; for example,

e Shunda should get only as many papers as she is sure to sell; then

she is sure to have a positive profit every day.

e Shunda should get about 17 newspapers every day because she most

often sold that number of papers.

e Shunda should get about 22 newspapers every day because half the

time she sold more than 22 newspapers and half the time she sold

less than 22 newspapers.,

ERIC \ 107 1ug
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e Shunda should get about 20 newspapers every day because that is

halfway between 35 (the most she sold) and 5 (the least she sold).

e Shunda should get 22 newspapers every Jay because that is the average

number she sold daily during the experimental period.

SHUNDA'S SOLUTION

We continue our story with Shunda organizing and studying the demand process

as reflected in her records for the experimental twenty-day period.

<1 . . andthen has the columns “close ranks "',

I
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Students follow along stopping to provide calculation results as needed. This
contribution and their previous practice with completing balance sheets or
“profit-o-meters" provide opportunities for students to find various calculation

methods.
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The largest demand during the twenty-day
experimental period was 35. Suppose
Shunda would decide on a constant daily
supply of 35 newspapers. Page 19 of

the booklet shows a record for the
twenty-day experimental period with

the constant supply of 35 newspapers.
We can view this picture as putting
Shunda's profit-o-meters for the

twenty days side by side and as

highlighting the demand staircase.

19

Students complete a balance sheet . . .

BALANCE SHEET
for 20 day experimentai period

DAILY SUPPLY TOTAL GAIN TOTAL LOSS TOTAL PROFIT

35 ‘yy 00 | *13.00 | *31.00

and then question the choice of 35 as a constant caily supply. With such a
supply, Shunda would satisfy her customers gvery day, but is it her most pro-
fitable choice? It seems that there is considerable loss (red) in the previous

picture.

With the above picture and previous experience of finding daily gain, loss, and

profit, students explore "what if" questions in preparation for determining a

most profitable constant daily supply.

148
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35

Suppose Shunda would decide on a

1

constant daily supply of 20 news-

papers. Page 21 of the booklet shows

a record for the twenty-day experi-

mental period with the constant

25

daily supply of 20 newspapers.

Would this cholce produce more

or less profit than a constant.daily
supply of 35 newspapers? There
is much less loss (red) but also

less gain (blue).

Stucents complete a balance sheet . . .

21

20

5

BALANCE SHEET
for 20 day experimental period

20 | *35.10 | ¥2.45

DAILY SUPPLY TOTAL GAIN TOTAL LOSS

TOTAL PPOFIT

$32.65

and find that 20 is a better choice than 35 for the constant daily suppiy. But

is it the best possible choice?




The next two pages of the booklet suggest a way to view the effect of changing
<

the constant daily supply.

~T v I T I 7
e e e > -y +
Shunda asks herself, "Would a constant darty supply of 21 newspapers be T T #4%»4_4* —t - 1
a better choice than207?" BT ; R
}-—+ + } + 4 + ¢
,‘rﬁ.‘fl FUR D T N A
- fr-—L -»»4{
Using her profit-o-meter, Shunda finds that 3 constant supply of 21 would . L T 1+
increase her profit by e e e
. 80 23
22

. TN L

Looking at the picture on page 23, Shunda notices immediately that changing
the zonstant dally supply from 21 to 22 newspapers would again Increase her
profit by e

3 .80

22 23

Therefore, with a constant daily supply of 22, Shunda's total profit would be
$34.25 ($32.65 + $.80 + $.80). This procedure demonstrates how the earlier

stylizing of Shunda's profit-o-meter contributes appropriate experience for

studying the graph that describes the demand procescs.
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Students complete additional profit-o-meters on pages 24 and 25 of the booklet

(shown here with solutions) . . .

Complete @ or @ or @
!
!

T T
‘ } ! Color the strips and complete the faces:

|
]
+/- &~ —
e
@ or @ or ~
(G0 e———
T 27
26 27
25
- 2+
.) 23 26
. ‘\;\\\’ . ~ M N :1\’ zz
4 5 40 i : 21
3 e
@———z»
zs‘

-
S G —

24 5

to find that Shunda could continue to increase her profit by increasing the con-
stant daily supply until the supply is 26. Changing the constant daily supply
from 26 to 27 would result in less profit as suagested by the frown on the hori-

zontal line for 27.

’
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SHUNDA'S CONCLUSION

During the twenty-day experimental period, ihe largest profit would have been

obtained with a daily supply of 26 newspapers.

8ALANCE SHEET
tor 20 day experimental period

DAILY SUPPLY TOTAL GAIN TOTAL LOSS TOTAL PROFIT

26 | #4080 | #5.60 | *35.20

Returning ‘o the early observation that one newspaper sold balances two news-
papers returned, Shunda takes another look at the graph describing the demand

process for the twenty-day experimental period.

QE\ D
N >
Shunda 1s very clever. She foynd that the best choice of a constant daily & & bafances

supply can be determined without much calculation.

-

L

35

26

|25

20

Do you understand Shunda 's idea ?

28 29
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The story-workbook ends with a discussion of Shunda's conclusion. Since 26
papers would have been the best constant supply for the twenty-day experimen-
tal period, Shunda decides to adopt it. Of course, she cannot be sure this will
remain the most profifable choice. She does not try to forecast future demand;
what she does is make the best choice based on the limited evidence of the
experimental period. As in most business ventures, she cannot avoid taking

some risk.

This example of statistics activities for the elementary school intends to in-
volve students in a real world application of mathematics. There is consider-
able calculation practice in a meaningful context. There is the opportunity to
use bar graphs in a dynamic way to organize data. And, most importantly from
a mathematical point of view, there is the experience of using statistics for

problem solving.

In the CSMP curriculum, the activities described in this paper appear in the
fifth-grade lessons from the Probability and Statistics strand.

Jomd
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Popuiation Growth

Tom M. Giambrone

Twenty-five percent of all of the people who ever walked
the face of the earth are living now. Ninety percent. of
the scientists of all time are living now.

Population statistics can be a rich source of surprising infermation that suggests
many implications about the world around us. The above statistics may indicate

why population growth is of worldwide concern and may reflect one reason for

the continuing technological explosion of this century.

Fopulation statistics appeal to students' natural curiosily about the world around
them and the future that lies ahead. The sixth-grade CSMP curriculum includes
a series of lessons on population growth. The lessons provide the opportunity
to organize, interpolate, and analyze real life statistics. More importantly,
students use the data to make inferences about the past, present, and

future — a rare activivy at the elementary level in the study of statistics.

Can elementary school students handle such a sophisticated topic? Can they
form inferences based upon statistical data? Students' experiences in the four
lessons outlined below reveal that the answer to each questionis a definite’

uyes.

POPULATION GROWTH RATES

The first lesson introduces students to the concept of population growth rate.
Using their intuitive sense of ratio, students develop techniques to compute

the growth rates and net population gains of several United States' cities.

The lesson begins with a discussion focused on the question: "What factors

affect population growth?" Students conclude that the factors affecting population

115 114 |
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fall into four categories: births, deaths, immigration, and emigration.

The discussion then moves to the meaning of the following statistic:

In 1977, the United States showed a net gain in population.
Its rate of growth was an additional 7.5 people for every

1,000 people.
Able to interpret this statistic, students proceed to develop several methods for

computing growth rate and net gains. Specifically, they complete this chart of

data on five U.S. cities.

Ciy popaition | K Gain - one Year
oo, | 5 000 9.8
s | 79,647 -14.7
tonolulu, | 705, 38 23.7
vew ik, | 7 895,563|  10.5
Sonnyice: | 6,208 54
Bogulusa, | 21,823 -30

Some methods that students might suggest are described below.
e Imagine the City of Hondo divided into flve groups of 1,000 people.
Each group gains about 9.8 people, so the net gain is about 49

people (5 X 9.8).

e Harrisburg's population is about 80,000, so the net loss is approx-

imately 1,176 people (80 X 14.7).

e Sunnyside's population is about 6.2 thousands. - Consider

= 54 and fill in the box by trial and error or by calculating

6.2 X
54 + 6.2. The growth rate is approximately 8.7 people per 1,000.

By not previding specific procedures for computing the net growth or the growth
rate, the teacher allows studenlts to create their own techniques. The strategies
{ -
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they develop increase their understanding of the concept "population growth

rate" — the key for later lessons in this sequence.

TABLES AND GRAPHS

The activities in a second lesson demonstrate that appropriate organization of
data facilitates both the interpretation of the data and inferences based upon
the data. Students begin by examining a mock newspaper article:

The United States population growth rate has been declining
lately. It also declined for a while before World War II.

We can easily see this from the following data. For each
year, the population growth rate per 1,000 people is given:
1950, 17.1; 1935, 6.3; 1965, 11.8; 1920, 18.8; 13955, 17.5;
1910, 15.2; 1975, 7.0; 1930, 7.3; 1940, 9.8; 1915, 14.9;
1960, 16.6; 1925, 13.8; 1970, 10.7; 1945, 10.7.

The teacher highlights the effect of the disorganized nature of the data by asking
several questions such as: When was the growth rate the highest? lowest?
When did it decline? The students' difficulty in answering these questions
motivates the central theme of the lesson: A-e there better ways in which to

present this data? The students suggest a table and a graph.

POPULATION GROWTH RATE

Annual Growth Rate FOR THE UNITED STATES

Year (per 1,000 people) 20

1910 15.2 - | ‘
1915 14.9 : \» 1 \K
1920 18.8 2

1925 13.8 g

1930 7.3 §

1935 6.3 =

1940 9.8 g0 4

1945 10.7 z

1950 17.1 3 \ \\
1955 17.5 5

1960 16.6 2 s

1965 11.8 :

1970 10.7

1975 7.0

0 1910 1920 1930 1940 1950 1950 1970 WRO

YEAR
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After constructing the table and the graph, the class reconsiders the questions
they previously found so difficult. The ease of answering the san.e questions

accentuates the benefit of organizing data.

Further questions reveal the advantage of the graph over the table. For exam-
ple, what was the growth rate in the year 1927? Through interpolation, the
stude;ts can estimate a 1927 growth rate of 12 people per 1,000 (see the
arrows below).

POPULATION GROWTH RATE
FOR THE UNITED STATES

20

N

ANNUAL GROWTH RATE (per 1,000 people)
=1
"]
N

ol

916 1920 1930 1940 1950 1960 1970 1980

YEAR

The graph also shows the large fluctuations in the U.S. population growth rate.
The rema:nder of the lesson focuses on the historical events that could have
caused such fluctuations. Students suggest the Great Depression and World

War Il as possible causes for the low rate of growth from 1930 to 1945. However,
changing sociological views, such as people deciding to marry later or electing
to have fewer children, seem a more likely cause of the recent low growth rate

from 1970 to 1975,

The activity of organizing data, found in the first part of this lesson, is fairly
commonplace in the study of statistics. However, the discussion of factors

that may have caused the large fluctuations in the population growth rate repre-
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sents an important shift in the 'esson. The students move from simply reading

the data to interpreting and making inferences based upon the data. These

attempts to 1nterpret data allow students to appreciate the purpose of organizing
data into graphs, rather than rotely practicing techniques of data organization.
Correlating data with known historical and sociological factors provides a

framework for later using current data to predict future events,

POPULATION PYRAMID

There exist many ways to graph a set of population data. The choice of a parti-

cular graph reflects the feature of the data that the statistician wishes to high-
light. In a third lesson, students explore several population graphs. First,
the comparison of two distinct graphical representations o: population growth
during the period 1910 to 1975 allows students to observe the different ways
that each graph portrays the same information. Then studenis also analyze
another graph, the population pyramid. The lesson begins with a comparison

of the following graphs.

A: Population Growth Rate B: U.S. Population (1910-1275)
for the U.S. (1910-197%5)

POPULATION GROWTH RATE

FOR THE UNITED STATES US POPULATION (1910-1975)
20 220 ]

| /
HALL -

180

160

140 #

ANNUAL GROWTH RATE (per 1,000 people)
S
A/
-
POPULATION {IN MILLIONS)
TN

- 100 1/

1910 1920 1930 1940 1950 1960 1970 1980 MO W0 WX 0 W W0 WM K
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Since these two graphs display the same census data, they reflect the same
trends in different ways. For example, students noiice the fact chat the popu-
lation is always increasing, shown in graph A by the rate always being positive
and in graph B by the total population always rising. Also, the low period 1n
growth from 1930 to 1940 shown in graph A corresponds to a "leveling off" in
graph B. Conversely, the sharp rise from 1950 to 1960 in graph B indicates

the high growth rate that is recorded in graph A. This activity encourages
students to observe different ways that graphs can display rates of growth. In
particular, the graphic comparison demonstrates that a declining (but positive)

growth rate and a rising total population can occur simultaneously.

Besides studying the overall growth rate, demographers also analyze the United
States population according to various factors : age, race, sex, religion, eic.
With this 1n mind, the following statistic motivates the idea of population dis-

tributions — the second theme of this lessorn.

United States : K-8

|1a70 : 34,300,000 students
1975 : 32,000,000 students

The decline 1n total elementary school enrollment surprises most students. Who
might be concerned about this decline in school enrollment? Teachers are most
certainly concerned. Implications of this single statistic include school clos-
ings, teachers being laid off, and many other problems all too familiar to the

reader. An open student discussion of this statistic focuses on such implications.

When first confronted with the above statistic, students assume that the decline
in school enrollment is due to an overall decline in the population. This conjec-

ture, however, contradicts the previous observation that the United States always

had a positive growth rate from 1910 to 1975. To resolve this dilemma, the
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teacher presents the idea of population distribution by age group.

U. S. Population by Age Group - 1976

Percent of Percent of

Age Total Population Age Total Population
0-4 7.1 40-44 5.2
5-9 e.1 45-49 5.4
10-14 9.2 50-54 5.6
15-19 9.8 55-59 5.0
20-24 9.1 60-64 4.3
25-29 8.3 65-69 3.9
30-34 6.6 70-74 2.8
35-39 5.5 75-79 1.9
80-84 1.3
>84 0.9

Total U. S. Population: 214,649,000

-

By comparing the percent of population in the 5-to-14 age groups ( the approxi-
mate K-8 enrollment in 1975) with the 10-to-19 age groups (the K-8 enrollment
in 1970), students note that the enrollment loss appears due to a decrease in
the number of people in that age group. The table reveals how the population

in a particular age group can decline even as the total U.S. population continues

to increase.

The introduction of population distribution by age suggests other questions of
human interest such as: How many Americans remember World War 1I? World

War [? How many Americans are over the age of 65?

After exploring these questions, students conclude the lesscn by constructing

a population pyramid of the United States population.

12y
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COMPARATIVE POPULATION GRAPHS

Upon graphing and interpreting a population pyramid for the United States, stu-
dents naturally assume that pyramid to be "normal" for countries. In this fourth
lesson, the very dissimilar shapes of both Sweden's and Mexico's population
distribution graphs as compared to the United States' graph, conclusively dis-
proves the students' assumption. A goal of this lesson is to interpret the three
countries' graphs as a means for conjecturing the political priorities of the

countries and what problems may lie in the future for each nation.

The beginning of the lesson returns to a conjecture made in the first lesson.
Between the years 1930 and 1945 the United States experienced a low rate of
growth. Two historical occurrences were given as the causfé‘ of this: The Great
Depression and World War II. The teacher challer.ges the students to use the

population pyramid to determine which event appears to have had greater impact.
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A notable feature of the abovz graph is the relatively low percent of people in

the 40-to-44 age group compared to neighboring age groups. Being of age
somewhere between 40 and 44 in 1976 means being born sometime in the years
from 1932 to 1936 — the midst of the Depression. Apparently, either people
during the Depression chose to have fewer children or their children had a much
lower life expectancy. The graph does suggest that the Depression was a greater

contributing factor to the lower population growth rate than was World War II.

Besides graphs, another simple statistical tool for comparing national popula-
tions is averaging. The population pyramid does not allow easy computation
of the mean age of the population; however, the median age is appropriate
and is easily computed. (The median age of a population is the age that 50%
of the population is younger than and 50% is older than.) The dark gray
shading on the following graph indicates the younger 50 % of the population.
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Most of the 25-to-29 age group is shaded dark gray. Therefore the median age
of the U.S. population is about 28. After completing this computation, students
discuss whether other countries are likely to have similar median ages. Even at
first glance, the population pyramids for Mexico and Sweden ( see below) reveal
the dramatically different population distributions in different countries.

POPULATION PYRAMID FORMEXICO - 1976

POPULATION PYRAMID FOR SWEDEN - 1975
TOTAL POPULATION:: 62,329, 000

TOTAL POPULATION 3,193,000
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With Sweden's uniform population distribution, its median age is about 35,
higher than that of the United States. In Mexico, a greater portion of the
populatibn 1s in the younger age groups and, therefore, the country has a low

median age, about 17.

What insights into areas of concern for these governments do these population
graphs and medians suggest? The remainder of *he lesson focuses on a com-
parison of some political and social issues these countries may soon face such
as:

e United States and Sweden have a large population in the older age

groups who need support.

o United States is closing schools while Mexico needs to build more

schools.

e Mexico's rapidly increasing population could cause shortages of

food, housing, and health facilities.

e Sweden has the largest percent of older people, while Mexico has

the smallest.

As in previous lessons, the lesson has moved to a discussion about the data.
The importance is not so much the statistical tools that the students acquire,
but the important realization that these tools enhance the discovery and dis-

cussion of events in the world around them.

AN EXTENSION

One can extend a lesson either by embellishing one of the topics covered or by
applying the same statistical techniques to a different context. There are num-
erous avenues for extending these lessons. One possible extension is to study
the impact of the current population distribution of the United States to a topic

of recent controversy: the Social Security System.

There have been several raises in the Social Security tax in recent years, each

one promising to set the system on firm ground. As we shall see, the problem
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with the system may lie in its basic design, therefore calling for more creative

measures to rectify the system.

Some citizens assume that the Social Security System invests the money they '
collect and later returns the money to the original contributors. In reality, the
system is designed so that the current work force generates the revenue for the
retirees currently on social security. In order to gain only a crude overview
and to simplify the analysis, we will contrast the total potential work force

(ages 20-62) to the total potential social security receivers (over 62).

AGE GROUP GRAPH
UNITED STATES - 1976

- i D potential retirement community 13%

PO A potential work force 53%

AGE GROUP
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The following questions highlight some difficulties in the Social Security System:
e How many people in the potential work force does it take to maintain

one person on social security?

e In 1981, how many people entered the work force for every person

who entered the retirement system?

e Will the situation get better or worse? in 1990? (Assume life

expectancy of 80.)
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The graph provides answers to these questions, In 1976, approximately four
people (4 x 13 is about 53 ) in the potential work force were nceded for every
one person on social security (a ratioof 4 t5 1), In 1981, however, approxi-
mately 5% of the population entered the social security sysiem while only 10%
of the population entered the work force (a ratio of 2 to 1); thus the potential
work force is not growing as fast as the potential retirees. And as we can see
from the graph, the problem will continue to worsen in the future since the popu-
lation entering the work force is decreasing, Questions such as those above
could be used as a beginning of another lesson on statistics and economics.

The important statistical activity again gives the students an opportunity of not

just taking the data at face wvalue but drawing implications from the data in re-

) +
gard to some social issues.

SUMMARY

The series of lessons on population growth exhibits several valuable features
for the teaching of statistics, namely:

e topics that interest students at a particular grade level,
¢ a problem-solving atmosphere, and

e a unifying factor for a variety of mathematical tools and concepts.

Students' curiosity about the world around them begins to emerge in the inter-
mediate grades., Utilizing this curlosity is valuable in teaching, in particular
teaching mathematics, effectively. Students' interest in certain situations

can be employed to create problem-solving activities that they are intrinsically
motivated to resolve with the use of mathematical tools. The Population Growth

lessons are an example of such activities, using interest to explore content.

Building on a foundatiun of interest, the mathematical content is then introduced

as a means toresolve questions and to generate a source of new inquiries, thus

t Even this simple analysis sheds light on problems affecting the Social Security
System and can serve to produce many conjectures which can be tested with a
more fine grained analysis. Statistics for such a treatment can be found in
“Statistical Abstracts of the United States."
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creating a true problem-solving atmosphere. Students learn new statistical

methc Js as well as gain an immediate appreciation of their application.

Lastly, an important lesson can be gained for curriculum design from th.e way
that population growth is used as a unifying theme for a variety of mathematical
concepts. For example, students encounter: reading graphs, estimating, per-
cents, ratios, as well as many other concepts and procedures that might other-
wise be taught separately as disjoint pleces of mathematics. The Population
Growth lessons are just one example of CSMP's curriculum design that engages
students in a variety of mathematical ideas presented in an interesting and

informative context.

In the CSMP curriculum, the activities described in this paper appear in sixth-
grade lessons from the Probability and Statistics strand.
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